Resticted Boltzmann Machines
A Short Tutorial
by Perimeter Institute Quantum Intelligence Lab

These notes are meant as a practical tutorial providing the minimum sufficient
knowledge required to build a Restricted Boltzmann Machine (RBM).

RBMs are among the top methods in unsupervised machine learning, where the
training data are inputs without labels and the task is, broadly speaking, to extract
some meaningful information from this data.

An RBM is a parametrized generative model representing a probability distribu-
tion. The training data is assumed to be a sample drawn independently from an
unknown target distribution g. The goal of training is to fit the parameters A
of the RBM’s distribution p, such that it resembles the target distribution ¢ as
accurately as possible.

Formally, RBMs belong to the class of undirected graphical models, also known
as Markov Random Fields (MRFs). Probabilistic graphical models describe prob-
ability distributions by mapping conditional (in)dependence properties between
random variables on a graph structure. Visualization by graphs is useful for un-
derstanding and motivating probabilistic models. Moreover, it can be helpful for
deriving complex computations by using algorithms that exploit the graph struc-
ture. Much can be said about the theoretical properties of graphical models and
the implications for RBMs. However, with the goal of keeping this tutorial short
and hands-on, we omit this discussion here and refer to the references provided at
the end.

Practically, an RBM is a two-layer network with bidirectionally connected stochas-
tic processing units, as shown in figure [I[l The V units in the first layer, denoted
by the vector v = (vy, ..., vy), correspond to the components of an observation and
are therefore called “visible”, while the H units in the second layer h = (hy, ..., hy)
represent latent variables, and are referred to as “hidden”. Hidden units model
dependencies between the observation components and can be viewed as feature
detectors. The term “restricted” refers to the connections between the units: Each
visible unit is connected with each hidden unit, but there are no connections be-
tween units of the same kind. In the simplest case (which is the case considered in
this tutorial), all units are binary, such that v € V = {0,1}Y and h € H = {0, 1} 7,
where curved letters V and H are used to denote the space of the visible and hid-
den vectors, respectively. Further, we use D to denote the training set containing
|D| instances of the visible vector (i.e., observations).

In analogy to spin models in statistical physics, the joint configuration (v, h) of

Figure 1: RBM as a bipartite graph. Figure from [6].

visible and hidden units is characterized by an energy

Ex(v,h) = —b"v —c"h — KT Wo (1)
% H
== b= > cihy = > vWishy,
=1 7=1 i

where v;, h; are binary states of visible unit ¢ and hidden unit j, and b;, ¢; are their
respective biases. W;; is the symmetric connection weight between the units. The
complete set of parameters is denoted by A = {b, ¢, W}. All parameter values
are real numbers.

Based on this energy function, the RBM assigns a probability to each joint config-
uration (v, h), which by convention is high when the energy of the configuration
is low:

1
pa(v, h) = Ee’Ek(“’h), (2)

known as the Gibbs distribution. The partition function 7 is given by summing
over all possible pairs of visible and hidden vectors:

Z=Y 3 e hbh (3)

veV heH

What we actually want to model is the probability distribution of an input
vector v, py(v). It is obtained by marginalizing the joint probability distribution
pa(v, h) over all possible hidden vectors h:

pr() = 5 Do e B, (@)

heH

By carrying out the sum over h, one obtains a related expression

1
pale) = e), @

where £,(v) is the effective energy, defined as

1+ exp (Cj + Z W,LJ’UZ>]
H

= by — Z softplus (Cj + Z Wijvi> .
J=1 i

Note that in some ML references this quantity is called the “free energy”, but it is
not the same as the free energy in physics, which is defined as F' = —In Z,.

H
Ex(v) = —bTv — Zln
=1

The joint probability distribution is related to the conditional distributions via the
chain rule as py(v, h) = px(v|h)pr(h) = pa(h|v)pr(v). Because there are no direct
connections between units of the same layer in an RBM, the conditional dis-
tributions p,(h|v) and py(v|h) factorize over each unit and are easy to compute.
With some straightforward algebra, one can show that

pa(hlv) = pr(hj\v)a (6)

pa(vlh) =]ﬁlpx(wlh), (7)

and _
pa(h; = 1) =S <cj + ZviWij> : (8)
pa(v;=1h) =S (bﬁZthzj), 9)

J

with § denoting the standard logistic sigmoid function:

S(z) = . (10)

Training the RBM means adjusting parameters A based on the given data set
D, such that py(v) is a good approximation of the true distribution ¢(v). In the
supervised setting, we would define a cost function that measures the discrep-
ancy between the network prediction and the desired output (which is part of the
training set), and perform a minimization of the cost function. Similarly, in the
unsupervised setting we introduce a cost function C) that measures how the
probability distribution p, is different from ¢, known as the Kullback-Leibler (KL)
divergence or the relative entropy:

Cy = Dirlalpy) = Y q() 2ot = —H(g) — (npa(v)),. (1)

The first term on the right-hand side is simply the Shannon entropy of q,

H(g) ==Y q(v)Ing(v), (12)

v

and the second term is an expectation value of the quantity Inp,(v) called the
log-likelihood:

(Inpa(v))g = D q(v) Inpa(v). (13)

v

The goal of the training procedure is then to find a set of parameters \ that min-
imizes the cost function C. The minimization is performed by gradient descent,
and the update rule for the parameters has the familiar form

A A—nV,Ch, (14)

where 7) is the learning rate.

Note that H(q) does not depend on A, such that only the log-likelihood term is
relevant for the optimization:

V)\C)\ = —V,\<lnp>\(v))q. (15)

However, the log-likelihood term involves the unknown target distribution ¢. In
order to proceed with the minimization, we approximate ¢ by the empirical dis-
tribution of the training data ¢p:

1 -
q(v) ~ gp(v) = D Zé(v —). (16)
The expectation value in eq. can then be evaluated as follows:

(I pa(0))g = {Inps(v))p = ﬁ S5 60—) lnpa(v)

v vED

= %Zlﬂpx(v)

veD

_ —ﬁ S [(0) +1n 2]

veD

_ _52&(0) —InZ,. (17)

veD

Thus, the gradient of the cost function is

1
VACy ~ =V \(Inpy(v))p = W ZV,\S,\(U) +V,lnZ,

= ap()VaEx(v) = Y pa(0)Vaéa(v)
= (Va&(©)p = (Va&a(0)y- (18)

We evaluate V)&, for each parameter in A by computing the gradient element-
wise:

0E\(v)
—0;1/,-]- =—u S (Cj + Zk:Uk;ij) = —vipa(h; = 1|v) (19)

a?Cgv) =-S (Cj + Xi:viWij> = —palh; = 1]v) (20)

0E\(v)
5@- = —u; (21)

The expectation value over the empirical probability distribution, (V,&x(v))p, can
easily be computed based on the training set. The term (V,Ex(v)),,, however,
poses some serious problems. This expectation value is over the marginalized
probability distribution py(v) = e~ /Z and involves the partition function Z
which requires evaluation of the sum over all h € ‘H and v € V, and is thus in
general intractable. There are several possible approximate methods to handle
this term, but not all of them are practicable. The straighforward approach is to
approximate the expectation (V,Ex(v)),, by an estimator sampled from the model
distribution p, using Gibbs sampling. In Gibbs sampling, each variable is sampled
from its conditional distribution given the current states of the other variables.
Starting from a randomly initialized visible state v = v(®), we alternate between
updating h and v according to py(h|v) and py(v|h). In RBMs, this procedure is
particularly efficient because the visible units are conditionally independent given
the hidden units (and vice versa), such that the calculation can be carried out
for all units in parallel, as illustrated in figure [2] This is referred to as Block
Gibbs Sampling. We repeat this procedure on M different initial states and use
the average to approximate the expectation value:

<V)\(€)\ Zp)\ V)\E)\ Z V)\(c:)\ (22)
v(t>EM

where the index t refers to the number of Gibbs steps performed and M denotes
the set of M visible state vectors v(*).

However, to ensure that the Markov chain converges to stationarity, the sampling
process has to be run for a long time, i.e., the number of Gibbs steps ¢ has to
be large. Since this process has to be repeated for each parameter update in the
learning procedure, this technique is computationally not feasible. Therefore, all
methods that are employed in practice introduce additional approximations.

The standard learning algorithm employed for RBM training is called Con-
trastive Divergence (CD-k) [2]. Essentially, the idea of this algorithm is to perform
only k steps of Gibbs sampling starting from a current training vector v = v(®) (note
the difference: in standard Gibbs sampling you start from a randomly initialized
vector!). Even though it is only crudely approximating the true expectation, the

h[D] h{l} h[i—l]
eeoooee eoeee@ eoeeee

O T TN

coo00000 cooo0000 coooo000 boooo0o0

2 o'l o) ol©)

Figure 2: In RBMs, the visible and hidden units are conditionally independent of
each other, such that Gibbs sampling can alternate between parallel updates of
the hidden and visible units. At £ — oo, the samples (v, h(¥)) are guaranteed to
be accurate samples of the model distribution py(v, h). Figure from [6].

learning works surprisingly well. In general, larger k yields a less biased estimate;
however, k = 1 is often sufficient to extract meaningful features in practice.

To sum up, the main steps of the CD-k learning procedure are:

0.

Select M vectors from the training data (referred to as mini batch) and
perform the next two steps for each of the M vectors in parallel.

. Initialize by setting the visibles to the training vector v.

Perform the following Gibbs sampling procedure k times:

e Compute the states of the hiddens (in parallel) by setting each unit to
1 with a probability given by eq. .

e Produce a “reconstruction” of v (denoted as v(¥, where i is the iteration
step number), by setting each visible to 1 with a probability given by

eq. ()

. Use the M reconstructions v®) to compute the estimator for (Vi&Ex(v)),

and update the model parameters A.

Go back to step 0 and repeat the procedure until stopping criteria fulfilled.

A remark on computing the state of a binary unit

Given a visible vector v and the set of parameters A\, how do we compute
the state of a hidden unit ;7 Since the unit is binary, its state is sampled
according to the Bernoulli distribution with the probability for h; having the
value 1 given by eq. . In practice, we sample a number u from a uniform
distribution over the interval [0, 1], u ~ U0, 1]. If u < px(h; = 1|v), set h; =1,
otherwise h; = 0.

A slight modification of the CD algorithm leads to the Persistent Contrastive
Divergence (PCD) algorithm [5]. In PCD, instead of initializing the chain to v(®) =
v € D each time, we use the negative sample from the previous iteration. That is,

PCD just keeps the Markov chain evolving, with parameter updates done after each
k steps. The number of persistent chains used for sampling is a hyperparameter. In
the standard case, there is one Markov chain per training example in a batch.

Suggested Reading and References

For composing this tutorial, we consulted a number of excellent references that
elucidate the topic of RBMs from different perspectives:

Hugo Larochelle’s course on Neural Networks — including lecture slides,
youtube videos and very useful references; part 5 is about RBMs. Very
beginner-friendly and intuitive, derivations of several central mathematical
expressions are done explicitly.

“An Introduction to RBMs” [I] by Fischer and Igel, with an emphasis on the
mathematical background, in particular graphical models. Explains Markov
Chains and Markov Chain Monte Carlo, Markov Random Fields, RBMs,
Contrastive Divergence and related algorithms, and provides an extensive
list of references.

“A Practical guide to Training RBMs” [3] by Hinton & Co. — as the title
promises, a practice-oriented text, with a very short intro to RBMs and a
detailed guide on the actual training process; less theory, more empirically
approved “recipies”.

“Training Products of Experts by Minimizing Contrastive Divergence” [2] —
the original article by Hinton introducing the CD algorithm, presented in a
clear and easily accessible form.

Finally, “A high-bias, low-variance introduction to Machine Learning for
physicists”| [4] by Mehta et al. — a recently written review of ML meth-
ods from a physicist’s perspective; covers many topics in ML, includes code
examples. Most importantly, it points out some insightful connections to
methods and models known to physicists from the fields of statistical and
many-body physics.

References

[1] Igel C. Fischer A. An introduction to restricted boltzmann machines. In Lecture
Notes in Computer Science, volume 7441, Berlin, Heidelberg, November 2012.
Springer.

[2] G.E. Hinton. Training products of experts by minimizing contrastive diver-
gence. Neural Computation, August 2002.

[3] G.E. Hinton. A practical guide to training restricted boltzmann machines. In
Lecture Notes in Computer Science, volume 7700, Berlin, Heidelberg, 2012.
Springer.

[4] P. Mehta, M. Bukov, C.-H. Wang, A. G. R. Day, C. Richardson, C. K. Fisher,
and D. J. Schwab. A high-bias, low-variance introduction to Machine Learning
for physicists. ArXiv e-prints, March 2018.

http://info.usherbrooke.ca/hlarochelle/neural_networks/content.html
https://pdfs.semanticscholar.org/dd13/5a89b5075af5cbef5becaf419457cdd77cc9.pdf
https://www.cs.toronto.edu/~hinton/absps/guideTR.pdf
http://www.cs.toronto.edu/~fritz/absps/tr00-004.pdf
https://arxiv.org/abs/1803.08823
https://arxiv.org/abs/1803.08823

[5] T. Tieleman. Training restricted boltzmann machines using approximations to
the likelihood gradient. In Proceedings of the 25th International Conference on
Machine Learning, ICML ’08, pages 1064-1071, New York, NY, USA, 2008.
ACM.

[6] Giacomo Torlai. In preparation. PhD thesis, University of Waterloo, 2018.

