
QuCumber Documentation
Release v1.2.2

PIQuIL

2019-07-17

INTRODUCTION

1 Installation 1
1.1 Github . 1
1.2 Windows . 1
1.3 Linux / macOS . 1

2 Theory 3

3 Download the tutorials 5

4 Reconstruction of a positive-real wavefunction 7
4.1 Transverse-field Ising model . 7
4.2 Using QuCumber to reconstruct the wavefunction . 7

4.2.1 Imports . 7
4.2.2 Training . 8

5 Reconstruction of a complex wavefunction 13
5.1 The wavefunction to be reconstructed . 13
5.2 Using qucumber to reconstruct the wavefunction . 13

5.2.1 Imports . 13
5.2.2 Training . 14

6 Sampling and calculating observables 21
6.1 Generate new samples . 21

6.1.1 Magnetization . 21
6.2 Calculate an observable using the Observable module . 22

6.2.1 Magnetization (again) . 22
6.2.2 TFIM Energy . 24
6.2.3 Adding observables . 25
6.2.4 Renyi Entropy and the Swap operator . 26
6.2.5 Custom observable . 26

6.3 Estimating Statistics of Many Observables Simultaneously . 28
6.3.1 Template for your custom observable . 30

7 Training while monitoring observables 31

8 RBM 35

9 Quantum States 37
9.1 Positive WaveFunction . 37
9.2 Complex WaveFunction . 41
9.3 Abstract WaveFunction . 45

i

10 Callbacks 49

11 Observables 57
11.1 Pauli Operators . 57
11.2 Neighbour Interactions . 61
11.3 Abstract Observable . 63

12 Complex Algebra 65

13 Data Handling 69

14 Indices and tables 71

Python Module Index 73

Index 75

ii

CHAPTER

ONE

INSTALLATION

QuCumber only supports Python 3, not Python 2. If you are using Python 2, please update! You may also want to
install PyTorch v1.0 (https://pytorch.org/), if you have not already.

If you’re running a reasonably up-to-date Linux or macOS system, PyTorch should get installed automatically when
you install QuCumber with pip.

1.1 Github

Navigate to the qucumber page on github (https://github.com/PIQuIL/QuCumber) and clone the repository by typing:

git clone https://github.com/PIQuIL/QuCumber.git

Navigate to the main directory and type:

python setup.py install

1.2 Windows

Navigate to the directory (through command prompt) where pip.exe is installed (usually
C:\Python\Scripts\pip.exe) and type:

pip.exe install qucumber

1.3 Linux / macOS

Open up a terminal, then type:

pip install qucumber

1

https://pytorch.org/
https://github.com/PIQuIL/QuCumber

QuCumber Documentation, Release v1.2.2

2 Chapter 1. Installation

CHAPTER

TWO

THEORY

For a basic introduction to Restricted Boltzmann Machines, click here.

3

QuCumber Documentation, Release v1.2.2

4 Chapter 2. Theory

CHAPTER

THREE

DOWNLOAD THE TUTORIALS

Once you have installed QuCumber, we recommend going through our tutorial that is divided into two parts.

1. Training a wave function to reconstruct a positive-real wave function (i.e. no phase) from a transverse-field Ising
model (TFIM) and then generating new data.

2. Training an wave function to reconstruct a complex wave function (i.e. with a phase) from a simple two qubit
random state and then generating new data.

We have made interactive python notebooks that can be downloaded (along with the data required) here. Note that the
linked examples are from the most recent stable release (relative to the version of the docs you’re currently viewing),
and may not match the examples shown in the following pages. It is recommended that you refer to documentation
for the latest stable release: https://qucumber.readthedocs.io/en/stable/.

If you wish to simply view the static, non-interactive notebooks, continue to the next page of the documentation.

Alternatively, you can view interactive notebooks online at: , though they may be slow.

5

https://github.com/PIQuIL/QuCumber/releases/tag/v1.2.2
https://qucumber.readthedocs.io/en/stable/
https://mybinder.org/v2/gh/PIQuIL/QuCumber/v1.2.2

QuCumber Documentation, Release v1.2.2

6 Chapter 3. Download the tutorials

CHAPTER

FOUR

RECONSTRUCTION OF A POSITIVE-REAL WAVEFUNCTION

This tutorial shows how to reconstruct a positive-real wavefunction via training a Restricted Boltzmann Machine
(RBM), the neural network behind QuCumber. The data used for training are 𝜎𝑧 measurements from a one-
dimensional transverse-field Ising model (TFIM) with 10 sites at its critical point.

4.1 Transverse-field Ising model

The example dataset, located in tfim1d_data.txt, comprises 10,000 𝜎𝑧 measurements from a one-dimensional
TFIM with 10 sites at its critical point. The Hamiltonian for the TFIM is given by

ℋ = −𝐽
∑︁
𝑖

𝜎𝑧
𝑖 𝜎

𝑧
𝑖+1 − ℎ

∑︁
𝑖

𝜎𝑥
𝑖 (4.1)

where 𝜎𝑧
𝑖 is the conventional spin-1/2 Pauli operator on site 𝑖. At the critical point, 𝐽 = ℎ = 1. By convention, spins

are represented in binary notation with zero and one denoting the states spin-down and spin-up, respectively.

4.2 Using QuCumber to reconstruct the wavefunction

4.2.1 Imports

To begin the tutorial, first import the required Python packages.

[1]: import numpy as np
import matplotlib.pyplot as plt

from qucumber.nn_states import PositiveWaveFunction
from qucumber.callbacks import MetricEvaluator

import qucumber.utils.training_statistics as ts
import qucumber.utils.data as data

The Python class PositiveWaveFunction contains generic properties of a RBM meant to reconstruct a positive-
real wavefunction, the most notable one being the gradient function required for stochastic gradient descent.

To instantiate a PositiveWaveFunction object, one needs to specify the number of visible and hidden units in
the RBM. The number of visible units, num_visible, is given by the size of the physical system, i.e. the number
of spins or qubits (10 in this case), while the number of hidden units, num_hidden, can be varied to change the
expressiveness of the neural network.

Note: The optimal num_hidden : num_visible ratio will depend on the system. For the TFIM, having this ratio
be equal to 1 leads to good results with reasonable computational effort.

7

QuCumber Documentation, Release v1.2.2

4.2.2 Training

To evaluate the training in real time, we compute the fidelity between the true ground-state wavefunction of the system
and the wavefunction that QuCumber reconstructs, |⟨𝜓|𝜓𝑅𝐵𝑀 ⟩|2, along with the Kullback-Leibler (KL) divergence
(the RBM’s cost function). As will be shown below, any custom function can be used to evaluate the training.

First, the training data and the true wavefunction of this system must be loaded using the data utility.

[2]: psi_path = "tfim1d_psi.txt"
train_path = "tfim1d_data.txt"
train_data, true_psi = data.load_data(train_path, psi_path)

As previously mentioned, to instantiate a PositiveWaveFunction object, one needs to specify the number of
visible and hidden units in the RBM; we choose them to be equal.

[3]: nv = train_data.shape[-1]
nh = nv

nn_state = PositiveWaveFunction(num_visible=nv, num_hidden=nh)
nn_state = PositiveWaveFunction(num_visible=nv, num_hidden=nh, gpu = False)

By default, QuCumber will attempt to run on a GPU, and default to CPU if GPU is not available. To run QuCumber
on a CPU, add the flag gpu=False in the PositiveWaveFunction object instantiation (i.e. uncomment the line
above).

Now we specify the hyperparameters of the training process:

1. epochs: the total number of training cycles that will be performed (default = 100)

2. pbs (pos_batch_size): the number of data points used in the positive phase of the gradient (default = 100)

3. nbs (neg_batch_size): the number of data points used in the negative phase of the gradient (default = 100)

4. k: the number of contrastive divergence steps (default = 1)

5. lr: the learning rate (default = 0.001)

Note: For more information on the hyperparameters above, it is strongly encouraged that the user to read
through the brief, but thorough theory document on RBMs located in the QuCumber documentation. One does
not have to specify these hyperparameters, as their default values will be used without the user overwriting
them. It is recommended to keep with the default values until the user has a stronger grasp on what these
hyperparameters mean. The quality and the computational efficiency of the training will highly depend on the
choice of hyperparameters. As such, playing around with the hyperparameters is almost always necessary.

For the TFIM with 10 sites, the following hyperparameters give excellent results:

[4]: epochs = 500
pbs = 100
nbs = pbs
lr = 0.01
k = 10

For evaluating the training in real time, the MetricEvaluator is called every 100 epochs in order to calculate the
training evaluators. The MetricEvaluator requires the following arguments:

1. period: the frequency of the training evaluators being calculated (e.g. period=100 means that the
MetricEvaluator will do an evaluation every 100 epochs)

2. A dictionary of functions you would like to reference to evaluate the training (arguments required for these
functions are keyword arguments placed after the dictionary)

8 Chapter 4. Reconstruction of a positive-real wavefunction

QuCumber Documentation, Release v1.2.2

The following additional arguments are needed to calculate the fidelity and KL divergence in the
training_statistics utility:

• target_psi: the true wavefunction of the system

• space: the Hilbert space of the system

The training evaluators can be printed out via the verbose=True statement.

Although the fidelity and KL divergence are excellent training evaluators, they are not practical to calculate in most
cases; the user may not have access to the target wavefunction of the system, nor may generating the Hilbert space of
the system be computationally feasible. However, evaluating the training in real time is extremely convenient.

Any custom function that the user would like to use to evaluate the training can be given to the MetricEvaluator,
thus avoiding having to calculate fidelity and/or KL divergence. Any custom function given to MetricEvaluator
must take the neural-network state (in this case, the PositiveWaveFunction object) and keyword arguments.
As an example, we define a custom function psi_coefficient, which is the fifth coefficient of the reconstructed
wavefunction multiplied by a parameter 𝐴.

[5]: def psi_coefficient(nn_state, space, A, **kwargs):
norm = nn_state.compute_normalization(space).sqrt_()
return A * nn_state.psi(space)[0][4] / norm

Now the Hilbert space of the system can be generated for the fidelity and KL divergence.

[6]: period = 10
space = nn_state.generate_hilbert_space(nv)

Now the training can begin. The PositiveWaveFunction object has a property called fit which takes care of
this. MetricEvaluator must be passed to the fit function in a list (callbacks).

[7]: callbacks = [
MetricEvaluator(

period,
{"Fidelity": ts.fidelity, "KL": ts.KL, "A_rbm_5": psi_coefficient},
target_psi=true_psi,
verbose=True,
space=space,
A=3.0,

)
]

nn_state.fit(
train_data,
epochs=epochs,
pos_batch_size=pbs,
neg_batch_size=nbs,
lr=lr,
k=k,
callbacks=callbacks,

)

Epoch: 10 Fidelity = 0.526148 KL = 1.310731 A_rbm_5 = 0.125463
Epoch: 20 Fidelity = 0.631814 KL = 0.875887 A_rbm_5 = 0.193193
Epoch: 30 Fidelity = 0.736986 KL = 0.577408 A_rbm_5 = 0.249697
Epoch: 40 Fidelity = 0.794626 KL = 0.445550 A_rbm_5 = 0.267554
Epoch: 50 Fidelity = 0.828487 KL = 0.363523 A_rbm_5 = 0.263156
Epoch: 60 Fidelity = 0.861033 KL = 0.284768 A_rbm_5 = 0.255909
Epoch: 70 Fidelity = 0.888133 KL = 0.226607 A_rbm_5 = 0.251317

(continues on next page)

4.2. Using QuCumber to reconstruct the wavefunction 9

QuCumber Documentation, Release v1.2.2

(continued from previous page)

Epoch: 80 Fidelity = 0.904473 KL = 0.191903 A_rbm_5 = 0.230342
Epoch: 90 Fidelity = 0.916896 KL = 0.168523 A_rbm_5 = 0.232834
Epoch: 100 Fidelity = 0.925543 KL = 0.151414 A_rbm_5 = 0.226578
Epoch: 110 Fidelity = 0.933069 KL = 0.136249 A_rbm_5 = 0.227657
Epoch: 120 Fidelity = 0.939533 KL = 0.122066 A_rbm_5 = 0.216086
Epoch: 130 Fidelity = 0.945398 KL = 0.109634 A_rbm_5 = 0.210336
Epoch: 140 Fidelity = 0.950329 KL = 0.099964 A_rbm_5 = 0.214536
Epoch: 150 Fidelity = 0.954255 KL = 0.092397 A_rbm_5 = 0.212398
Epoch: 160 Fidelity = 0.957539 KL = 0.086165 A_rbm_5 = 0.213869
Epoch: 170 Fidelity = 0.959890 KL = 0.081415 A_rbm_5 = 0.205124
Epoch: 180 Fidelity = 0.961762 KL = 0.077955 A_rbm_5 = 0.207600
Epoch: 190 Fidelity = 0.963395 KL = 0.075018 A_rbm_5 = 0.203214
Epoch: 200 Fidelity = 0.965103 KL = 0.071877 A_rbm_5 = 0.207948
Epoch: 210 Fidelity = 0.966435 KL = 0.069428 A_rbm_5 = 0.216086
Epoch: 220 Fidelity = 0.967274 KL = 0.067780 A_rbm_5 = 0.215082
Epoch: 230 Fidelity = 0.968685 KL = 0.064706 A_rbm_5 = 0.211092
Epoch: 240 Fidelity = 0.969841 KL = 0.062323 A_rbm_5 = 0.213523
Epoch: 250 Fidelity = 0.971052 KL = 0.059850 A_rbm_5 = 0.212783
Epoch: 260 Fidelity = 0.971965 KL = 0.057842 A_rbm_5 = 0.208115
Epoch: 270 Fidelity = 0.973736 KL = 0.054289 A_rbm_5 = 0.215748
Epoch: 280 Fidelity = 0.974085 KL = 0.053346 A_rbm_5 = 0.212171
Epoch: 290 Fidelity = 0.976066 KL = 0.049299 A_rbm_5 = 0.219986
Epoch: 300 Fidelity = 0.977303 KL = 0.046733 A_rbm_5 = 0.225259
Epoch: 310 Fidelity = 0.978261 KL = 0.044790 A_rbm_5 = 0.228821
Epoch: 320 Fidelity = 0.979351 KL = 0.042555 A_rbm_5 = 0.225733
Epoch: 330 Fidelity = 0.980212 KL = 0.040565 A_rbm_5 = 0.223765
Epoch: 340 Fidelity = 0.981664 KL = 0.037660 A_rbm_5 = 0.226980
Epoch: 350 Fidelity = 0.982528 KL = 0.035918 A_rbm_5 = 0.230829
Epoch: 360 Fidelity = 0.983351 KL = 0.034181 A_rbm_5 = 0.224962
Epoch: 370 Fidelity = 0.984213 KL = 0.032504 A_rbm_5 = 0.225617
Epoch: 380 Fidelity = 0.984872 KL = 0.031177 A_rbm_5 = 0.227120
Epoch: 390 Fidelity = 0.985186 KL = 0.030594 A_rbm_5 = 0.222515
Epoch: 400 Fidelity = 0.985662 KL = 0.029606 A_rbm_5 = 0.220782
Epoch: 410 Fidelity = 0.986466 KL = 0.028079 A_rbm_5 = 0.227727
Epoch: 420 Fidelity = 0.986970 KL = 0.027100 A_rbm_5 = 0.233300
Epoch: 430 Fidelity = 0.987040 KL = 0.026978 A_rbm_5 = 0.232759
Epoch: 440 Fidelity = 0.987675 KL = 0.025714 A_rbm_5 = 0.224514
Epoch: 450 Fidelity = 0.988244 KL = 0.024636 A_rbm_5 = 0.229669
Epoch: 460 Fidelity = 0.988569 KL = 0.023975 A_rbm_5 = 0.230897
Epoch: 470 Fidelity = 0.988666 KL = 0.023802 A_rbm_5 = 0.229378
Epoch: 480 Fidelity = 0.988781 KL = 0.023565 A_rbm_5 = 0.236488
Epoch: 490 Fidelity = 0.989243 KL = 0.022694 A_rbm_5 = 0.228858
Epoch: 500 Fidelity = 0.988991 KL = 0.023196 A_rbm_5 = 0.235301

All of these training evaluators can be accessed after the training has completed. The code below shows this, along
with plots of each training evaluator as a function of epoch (training cycle number).

[8]: # Note that the key given to the *MetricEvaluator* must be
what comes after callbacks[0].
fidelities = callbacks[0].Fidelity

Alternatively, we can use the usual dictionary/list subsripting
syntax. This is useful in cases where the name of the
metric contains special characters or spaces.
KLs = callbacks[0]["KL"]
coeffs = callbacks[0]["A_rbm_5"]

(continues on next page)

10 Chapter 4. Reconstruction of a positive-real wavefunction

QuCumber Documentation, Release v1.2.2

(continued from previous page)

epoch = np.arange(period, epochs + 1, period)

[9]: # Some parameters to make the plots look nice
params = {

"text.usetex": True,
"font.family": "serif",
"legend.fontsize": 14,
"figure.figsize": (10, 3),
"axes.labelsize": 16,
"xtick.labelsize": 14,
"ytick.labelsize": 14,
"lines.linewidth": 2,
"lines.markeredgewidth": 0.8,
"lines.markersize": 5,
"lines.marker": "o",
"patch.edgecolor": "black",

}
plt.rcParams.update(params)
plt.style.use("seaborn-deep")

[10]: # Plotting
fig, axs = plt.subplots(nrows=1, ncols=3, figsize=(14, 3))
ax = axs[0]
ax.plot(epoch, fidelities, "o", color="C0", markeredgecolor="black")
ax.set_ylabel(r"Fidelity")
ax.set_xlabel(r"Epoch")

ax = axs[1]
ax.plot(epoch, KLs, "o", color="C1", markeredgecolor="black")
ax.set_ylabel(r"KL Divergence")
ax.set_xlabel(r"Epoch")

ax = axs[2]
ax.plot(epoch, coeffs, "o", color="C2", markeredgecolor="black")
ax.set_ylabel(r"$A\psi_{RBM}[5]$")
ax.set_xlabel(r"Epoch")

plt.tight_layout()
plt.savefig("fid_KL.pdf")
plt.show()

It should be noted that one could have just ran nn_state.fit(train_samples), which uses the default hyper-
parameters and no training evaluators.

To demonstrate how important it is to find the optimal hyperparameters for a certain system, restart this notebook and
comment out the original fit statement, then uncomment and run the cell below.

4.2. Using QuCumber to reconstruct the wavefunction 11

QuCumber Documentation, Release v1.2.2

[11]: # nn_state.fit(train_samples)

Using the non-default hyperparameters yielded a fidelity of approximately 0.989, while the default hyperparameters
yield approximately 0.523!

The trained RBM’s parameters are saved to a pickle file with the name saved_params.pt for future use in other
tutorials:

[12]: nn_state.save("saved_params.pt")

This saves the weights, visible biases and hidden biases as torch tensors with the following keys: “weights”, “visi-
ble_bias”, “hidden_bias”.

12 Chapter 4. Reconstruction of a positive-real wavefunction

CHAPTER

FIVE

RECONSTRUCTION OF A COMPLEX WAVEFUNCTION

In this tutorial, a walkthrough of how to reconstruct a complex wavefunction via training a Restricted Boltzmann
Machine (RBM), the neural network behind QuCumber, will be presented.

5.1 The wavefunction to be reconstructed

The simple wavefunction below describing two qubits (coefficients stored in qubits_psi.txt) will be recon-
structed.

|𝜓⟩ = 𝛼|00⟩+ 𝛽|01⟩+ 𝛾|10⟩+ 𝛿|11⟩ (5.1)

where the exact values of 𝛼, 𝛽, 𝛾 and 𝛿 used for this tutorial are

𝛼 = 0.2861 + 0.0539𝑖 (5.2)
𝛽 = 0.3687− 0.3023𝑖 (5.3)
𝛾 = −0.1672− 0.3529𝑖 (5.4)
𝛿 = −0.5659− 0.4639𝑖. (5.5)

The example dataset, qubits_train.txt, comprises of 500 𝜎 measurements made in various bases (X, Y and Z).
A corresponding file containing the bases for each data point in qubits_train.txt, qubits_train_bases.
txt, is also required. As per convention, spins are represented in binary notation with zero and one denoting spin-
down and spin-up, respectively.

5.2 Using qucumber to reconstruct the wavefunction

5.2.1 Imports

To begin the tutorial, first import the required Python packages.

[1]: import numpy as np
import torch
import matplotlib.pyplot as plt

from qucumber.nn_states import ComplexWaveFunction

from qucumber.callbacks import MetricEvaluator

import qucumber.utils.unitaries as unitaries
import qucumber.utils.cplx as cplx

(continues on next page)

13

QuCumber Documentation, Release v1.2.2

(continued from previous page)

import qucumber.utils.training_statistics as ts
import qucumber.utils.data as data

The Python class ComplexWaveFunction contains generic properties of a RBM meant to reconstruct a complex
wavefunction, the most notable one being the gradient function required for stochastic gradient descent.

To instantiate a ComplexWaveFunction object, one needs to specify the number of visible and hidden units in
the RBM. The number of visible units, num_visible, is given by the size of the physical system, i.e. the number
of spins or qubits (2 in this case), while the number of hidden units, num_hidden, can be varied to change the
expressiveness of the neural network.

Note: The optimal num_hidden : num_visible ratio will depend on the system. For the two-qubit wavefunction
described above, good results are yielded when this ratio is 1.

On top of needing the number of visible and hidden units, a ComplexWaveFunction object requires the user
to input a dictionary containing the unitary operators (2x2) that will be used to rotate the qubits in and out of the
computational basis, Z, during the training process. The unitaries utility will take care of creating this dictionary.

The MetricEvaluator class and training_statistics utility are built-in amenities that will allow the user
to evaluate the training in real time.

Lastly, the cplx utility allows QuCumber to be able to handle complex numbers. Currently, PyTorch does not support
complex numbers.

5.2.2 Training

To evaluate the training in real time, the fidelity between the true wavefunction of the system and the wavefunction
that QuCumber reconstructs, |⟨𝜓|𝜓𝑅𝐵𝑀 ⟩|2, will be calculated along with the Kullback-Leibler (KL) divergence (the
RBM’s cost function). First, the training data and the true wavefunction of this system need to be loaded using the
data utility.

[2]: train_path = "qubits_train.txt"
train_bases_path = "qubits_train_bases.txt"
psi_path = "qubits_psi.txt"
bases_path = "qubits_bases.txt"

train_samples, true_psi, train_bases, bases = data.load_data(
train_path, psi_path, train_bases_path, bases_path

)

The file qubits_bases.txt contains every unique basis in the qubits_train_bases.txt file. Calculation
of the full KL divergence in every basis requires the user to specify each unique basis.

As previously mentioned, a ComplexWaveFunction object requires a dictionary that contains the unitary operators
that will be used to rotate the qubits in and out of the computational basis, Z, during the training process. In the case of
the provided dataset, the unitaries required are the well-known 𝐻 , and 𝐾 gates. The dictionary needed can be created
with the following command.

[3]: unitary_dict = unitaries.create_dict()
unitary_dict = unitaries.create_dict(unitary_name=torch.tensor([[real part],
[imaginary part]],
dtype=torch.double)

If the user wishes to add their own unitary operators from their experiment to unitary_dict, uncomment the block
above. When unitaries.create_dict() is called, it will contain the identity and the𝐻 and𝐾 gates by default
under the keys “Z”, “X” and “Y”, respectively.

14 Chapter 5. Reconstruction of a complex wavefunction

QuCumber Documentation, Release v1.2.2

The number of visible units in the RBM is equal to the number of qubits. The number of hidden units will also be
taken to be the number of visible units.

[4]: nv = train_samples.shape[-1]
nh = nv

nn_state = ComplexWaveFunction(
num_visible=nv, num_hidden=nh, unitary_dict=unitary_dict, gpu=False

)

By default, QuCumber will attempt to run on a GPU if one is available (if one is not available, QuCumber will
fall back to CPU). If one wishes to guarantee that QuCumber runs on the CPU, add the flag gpu=False in the
ComplexWaveFunction object instantiation. Set gpu=True in the line above to run this tutorial on a GPU.

Now the hyperparameters of the training process can be specified.

1. epochs: the total number of training cycles that will be performed (default = 100)

2. pos_batch_size: the number of data points used in the positive phase of the gradient (default = 100)

3. neg_batch_size: the number of data points used in the negative phase of the gradient (default =
pos_batch_size)

4. k: the number of contrastive divergence steps (default = 1)

5. lr: the learning rate (default = 0.001)

Note: For more information on the hyperparameters above, it is strongly encouraged that the user to read through
the brief, but thorough theory document on RBMs. One does not have to specify these hyperparameters, as their
default values will be used without the user overwriting them. It is recommended to keep with the default values
until the user has a stronger grasp on what these hyperparameters mean. The quality and the computational
efficiency of the training will highly depend on the choice of hyperparameters. As such, playing around with
the hyperparameters is almost always necessary.

The two-qubit example in this tutorial should be extremely easy to train, regardless of the choice of hyperparameters.
However, the hyperparameters below will be used.

[5]: epochs = 100
pbs = 50 # pos_batch_size
nbs = 50 # neg_batch_size
lr = 0.1
k = 5

For evaluating the training in real time, the MetricEvaluator will be called to calculate the training evaluators
every 10 epochs. The MetricEvaluator requires the following arguments.

1. period: the frequency of the training evaluators being calculated (e.g. period=200 means that the
MetricEvaluator will compute the desired metrics every 200 epochs)

2. A dictionary of functions you would like to reference to evaluate the training (arguments required for these
functions are keyword arguments placed after the dictionary)

The following additional arguments are needed to calculate the fidelity and KL divergence in the
training_statistics utility.

• target_psi (the true wavefunction of the system)

• space (the entire Hilbert space of the system)

The training evaluators can be printed out via the verbose=True statement.

5.2. Using qucumber to reconstruct the wavefunction 15

QuCumber Documentation, Release v1.2.2

Although the fidelity and KL divergence are excellent training evaluators, they are not practical to calculate in most
cases; the user may not have access to the target wavefunction of the system, nor may generating the Hilbert space of
the system be computationally feasible. However, evaluating the training in real time is extremely convenient.

Any custom function that the user would like to use to evaluate the training can be given to the MetricEvaluator,
thus avoiding having to calculate fidelity and/or KL divergence. As an example, functions that calculate the
the norm of each of the reconstructed wavefunction’s coefficients are presented. Any custom function given to
MetricEvaluator must take the neural-network state (in this case, the ComplexWaveFunction object) and
keyword arguments. Although the given example requires the Hilbert space to be computed, the scope of the
MetricEvaluator’s ability to be able to handle any function should still be evident.

[6]: def alpha(nn_state, space, **kwargs):
rbm_psi = nn_state.psi(space)
normalization = nn_state.compute_normalization(space).sqrt_()
alpha_ = cplx.norm(

torch.tensor([rbm_psi[0][0], rbm_psi[1][0]], device=nn_state.device)
/ normalization

)

return alpha_

def beta(nn_state, space, **kwargs):
rbm_psi = nn_state.psi(space)
normalization = nn_state.compute_normalization(space).sqrt_()
beta_ = cplx.norm(

torch.tensor([rbm_psi[0][1], rbm_psi[1][1]], device=nn_state.device)
/ normalization

)

return beta_

def gamma(nn_state, space, **kwargs):
rbm_psi = nn_state.psi(space)
normalization = nn_state.compute_normalization(space).sqrt_()
gamma_ = cplx.norm(

torch.tensor([rbm_psi[0][2], rbm_psi[1][2]], device=nn_state.device)
/ normalization

)

return gamma_

def delta(nn_state, space, **kwargs):
rbm_psi = nn_state.psi(space)
normalization = nn_state.compute_normalization(space).sqrt_()
delta_ = cplx.norm(

torch.tensor([rbm_psi[0][3], rbm_psi[1][3]], device=nn_state.device)
/ normalization

)

return delta_

Now the Hilbert space of the system must be generated for the fidelity and KL divergence and the dictionary of
functions the user would like to compute every period epochs must be given to the MetricEvaluator. Note
that some of the coefficients aren’t being evaluated as they are commented out. This is simply to avoid cluttering the
output, and may be uncommented by the user.

16 Chapter 5. Reconstruction of a complex wavefunction

QuCumber Documentation, Release v1.2.2

[7]: period = 2
space = nn_state.generate_hilbert_space(nv)

callbacks = [
MetricEvaluator(

period,
{

"Fidelity": ts.fidelity,
"KL": ts.KL,
"norm": alpha,
"norm": beta,
"norm": gamma,
"norm": delta,

},
target_psi=true_psi,
bases=bases,
verbose=True,
space=space,

)
]

Now the training can begin. The ComplexWaveFunction object has a function called fit which takes care of
this.

[8]: nn_state.fit(
train_samples,
epochs=epochs,
pos_batch_size=pbs,
neg_batch_size=nbs,
lr=lr,
k=k,
input_bases=train_bases,
callbacks=callbacks,

)

Epoch: 2 Fidelity = 0.623747 KL = 0.226386 norm = 0.272518
Epoch: 4 Fidelity = 0.744691 KL = 0.142639 norm = 0.248872
Epoch: 6 Fidelity = 0.818254 KL = 0.094584 norm = 0.263589
Epoch: 8 Fidelity = 0.867098 KL = 0.067506 norm = 0.278453
Epoch: 10 Fidelity = 0.900217 KL = 0.051592 norm = 0.281094
Epoch: 12 Fidelity = 0.922993 KL = 0.041311 norm = 0.276052
Epoch: 14 Fidelity = 0.937807 KL = 0.034972 norm = 0.274676
Epoch: 16 Fidelity = 0.947232 KL = 0.030543 norm = 0.283873
Epoch: 18 Fidelity = 0.955277 KL = 0.027313 norm = 0.278906
Epoch: 20 Fidelity = 0.959930 KL = 0.025034 norm = 0.290271
Epoch: 22 Fidelity = 0.963333 KL = 0.023719 norm = 0.296183
Epoch: 24 Fidelity = 0.969419 KL = 0.021086 norm = 0.276108
Epoch: 26 Fidelity = 0.972300 KL = 0.020200 norm = 0.290305
Epoch: 28 Fidelity = 0.974777 KL = 0.018635 norm = 0.284231
Epoch: 30 Fidelity = 0.976208 KL = 0.017865 norm = 0.282036
Epoch: 32 Fidelity = 0.978382 KL = 0.016862 norm = 0.282498
Epoch: 34 Fidelity = 0.980578 KL = 0.015977 norm = 0.279435
Epoch: 36 Fidelity = 0.980983 KL = 0.015545 norm = 0.277835
Epoch: 38 Fidelity = 0.982651 KL = 0.014751 norm = 0.280070
Epoch: 40 Fidelity = 0.983155 KL = 0.014353 norm = 0.276912
Epoch: 42 Fidelity = 0.983996 KL = 0.013827 norm = 0.278844
Epoch: 44 Fidelity = 0.982731 KL = 0.015100 norm = 0.305219
Epoch: 46 Fidelity = 0.984791 KL = 0.013417 norm = 0.293674

(continues on next page)

5.2. Using qucumber to reconstruct the wavefunction 17

QuCumber Documentation, Release v1.2.2

(continued from previous page)

Epoch: 48 Fidelity = 0.985395 KL = 0.012845 norm = 0.280658
Epoch: 50 Fidelity = 0.986767 KL = 0.012093 norm = 0.277599
Epoch: 52 Fidelity = 0.987795 KL = 0.011650 norm = 0.278886
Epoch: 54 Fidelity = 0.987057 KL = 0.011843 norm = 0.271735
Epoch: 56 Fidelity = 0.987125 KL = 0.011552 norm = 0.280304
Epoch: 58 Fidelity = 0.987295 KL = 0.011382 norm = 0.288229
Epoch: 60 Fidelity = 0.988201 KL = 0.011201 norm = 0.266736
Epoch: 62 Fidelity = 0.989181 KL = 0.010504 norm = 0.288520
Epoch: 64 Fidelity = 0.989308 KL = 0.010293 norm = 0.292218
Epoch: 66 Fidelity = 0.989321 KL = 0.009901 norm = 0.282069
Epoch: 68 Fidelity = 0.989347 KL = 0.009836 norm = 0.275723
Epoch: 70 Fidelity = 0.989494 KL = 0.009838 norm = 0.293840
Epoch: 72 Fidelity = 0.990115 KL = 0.009225 norm = 0.282556
Epoch: 74 Fidelity = 0.990199 KL = 0.009095 norm = 0.278911
Epoch: 76 Fidelity = 0.989979 KL = 0.009214 norm = 0.273241
Epoch: 78 Fidelity = 0.989633 KL = 0.009275 norm = 0.274384
Epoch: 80 Fidelity = 0.989972 KL = 0.008976 norm = 0.275430
Epoch: 82 Fidelity = 0.989920 KL = 0.008871 norm = 0.285605
Epoch: 84 Fidelity = 0.991177 KL = 0.008183 norm = 0.282607
Epoch: 86 Fidelity = 0.991249 KL = 0.008095 norm = 0.276934
Epoch: 88 Fidelity = 0.990857 KL = 0.008273 norm = 0.272151
Epoch: 90 Fidelity = 0.990802 KL = 0.008071 norm = 0.280823
Epoch: 92 Fidelity = 0.991090 KL = 0.007838 norm = 0.279963
Epoch: 94 Fidelity = 0.990995 KL = 0.007861 norm = 0.275772
Epoch: 96 Fidelity = 0.990326 KL = 0.008202 norm = 0.289882
Epoch: 98 Fidelity = 0.991012 KL = 0.007690 norm = 0.277037
Epoch: 100 Fidelity = 0.991736 KL = 0.007292 norm = 0.275516

All of these training evaluators can be accessed after the training has completed, as well. The code below shows this,
along with plots of each training evaluator versus the training cycle number (epoch).

[9]: # Note that the key given to the *MetricEvaluator* must be
what comes after callbacks[0].
fidelities = callbacks[0].Fidelity

Alternatively, we may use the usual dictionary/list subscripting
syntax. This is useful in cases where the name of the metric
may contain special characters or spaces.
KLs = callbacks[0]["KL"]
coeffs = callbacks[0]["norm"]
epoch = np.arange(period, epochs + 1, period)

[10]: # Some parameters to make the plots look nice
params = {

"text.usetex": True,
"font.family": "serif",
"legend.fontsize": 14,
"figure.figsize": (10, 3),
"axes.labelsize": 16,
"xtick.labelsize": 14,
"ytick.labelsize": 14,
"lines.linewidth": 2,
"lines.markeredgewidth": 0.8,
"lines.markersize": 5,
"lines.marker": "o",
"patch.edgecolor": "black",

(continues on next page)

18 Chapter 5. Reconstruction of a complex wavefunction

QuCumber Documentation, Release v1.2.2

(continued from previous page)

}
plt.rcParams.update(params)
plt.style.use("seaborn-deep")

[11]: fig, axs = plt.subplots(nrows=1, ncols=3, figsize=(14, 3))
ax = axs[0]
ax.plot(epoch, fidelities, "o", color="C0", markeredgecolor="black")
ax.set_ylabel(r"Fidelity")
ax.set_xlabel(r"Epoch")

ax = axs[1]
ax.plot(epoch, KLs, "o", color="C1", markeredgecolor="black")
ax.set_ylabel(r"KL Divergence")
ax.set_xlabel(r"Epoch")

ax = axs[2]
ax.plot(epoch, coeffs, "o", color="C2", markeredgecolor="black")
ax.set_ylabel(r"$\vert\alpha\vert$")
ax.set_xlabel(r"Epoch")

plt.tight_layout()
plt.savefig("complex_fid_KL.pdf")
plt.show()

It should be noted that one could have just ran nn_state.fit(train_samples) and just used the default
hyperparameters and no training evaluators.

At the end of the training process, the network parameters (the weights, visible biases and hidden biases) are stored in
the ComplexWaveFunction object. One can save them to a pickle file, which will be called saved_params.pt,
with the following command.

[12]: nn_state.save("saved_params.pt")

This saves the weights, visible biases and hidden biases as torch tensors with the following keys: “weights”, “visi-
ble_bias”, “hidden_bias”.

5.2. Using qucumber to reconstruct the wavefunction 19

QuCumber Documentation, Release v1.2.2

20 Chapter 5. Reconstruction of a complex wavefunction

CHAPTER

SIX

SAMPLING AND CALCULATING OBSERVABLES

6.1 Generate new samples

Firstly, to generate meaningful data, an RBM needs to be trained. Please refer to the tutorials 1 and 2 on training an
RBM if how to train an RBM using QuCumber is unclear. An RBM with a positive-real wavefunction describing a
transverse-field Ising model (TFIM) with 10 sites has already been trained in the first tutorial, with the parameters of
the machine saved here as saved_params.pt. The autoload function can be employed here to instantiate the
corresponding PositiveWaveFunction object from the saved RBM parameters.

[1]: import numpy as np
import matplotlib.pyplot as plt

from qucumber.nn_states import PositiveWaveFunction

from qucumber.observables import ObservableBase

from quantum_ising_chain import TFIMChainEnergy, Convergence

nn_state = PositiveWaveFunction.autoload("saved_params.pt")

A PositiveWaveFunction object has a property called sample that allows us to sample the learned distribution
of TFIM chains. The it takes the following arguments (along with a few others which are not relevant for our purposes):

1. k: the number of Gibbs steps to perform to generate the new samples. Increasing this number will produce
samples closer to the learned distribution, but will require more computation.

2. num_samples: the number of new data points to be generated

[2]: new_samples = nn_state.sample(k=100, num_samples=10000)
print(new_samples)

tensor([[1., 0., 1., ..., 1., 1., 1.],
[1., 1., 1., ..., 1., 0., 0.],
[0., 1., 1., ..., 1., 1., 1.],
...,
[1., 0., 0., ..., 0., 1., 1.],
[0., 0., 1., ..., 1., 1., 1.],
[1., 1., 1., ..., 1., 0., 0.]], dtype=torch.float64)

6.1.1 Magnetization

With the newly generated samples, the user can now easliy calculate observables that do not require any details
associated with the RBM. A great example of this is the magnetization. To calculate the magnetization, the newly-

21

QuCumber Documentation, Release v1.2.2

generated samples must be converted to ± 1 from 1 and 0, respectively. The function below does the trick.

[3]: def to_pm1(samples):
return samples.mul(2.0).sub(1.0)

Now, the (absolute) magnetization in the Z-direction is calculated as follows.

[4]: def Magnetization(samples):
return to_pm1(samples).mean(1).abs().mean()

magnetization = Magnetization(new_samples).item()

print("Magnetization = %.5f" % magnetization)

Magnetization = 0.55246

The exact value for the magnetization is 0.5610.

The magnetization and the newly-generated samples can also be saved to a pickle file along with the RBM parameters
in the PositiveWaveFunction object.

[5]: nn_state.save(
"saved_params_and_new_data.pt",
metadata={"samples": new_samples, "magnetization": magnetization},

)

The metadata argument in the save function takes in a dictionary of data that you would like to save alongside the
RBM parameters.

6.2 Calculate an observable using the Observable module

6.2.1 Magnetization (again)

QuCumber provides the Observable module to simplify estimation of expectations and variances of observables in
memory efficient ways. To start off, we’ll repeat the above example using the SigmaZ Observable module provided
with QuCumber.

[6]: from qucumber.observables import SigmaZ

We’ll compute the absolute magnetization again, for the sake of comparison with the previous example. We want to
use the samples drawn earlier to perform this estimate, so we use the statistics_from_samples function:

[7]: sz = SigmaZ(absolute=True)
sz.statistics_from_samples(nn_state, new_samples)

[7]: {'mean': 0.5524600000000002,
'variance': 0.09724167256725606,
'std_error': 0.0031183597061156376}

With this function we get the variance and standard error for free. Now you may be asking: “That isn’t too difficult, I
could have computed those myself!”. The power of the Observable module comes from the fact that it simplifies
estimation of these values over a large number of samples. The statistics function computes these statistics by
generating the samples internally. Let’s see it in action:

22 Chapter 6. Sampling and calculating observables

QuCumber Documentation, Release v1.2.2

[8]: %time sz.statistics(nn_state, num_samples=10000, burn_in=100)
just think of burn_in as being equivalent to k for now

CPU times: user 1.77 s, sys: 5.24 ms, total: 1.78 s
Wall time: 582 ms

[8]: {'mean': 0.5486800000000001,
'variance': 0.10007226482647404,
'std_error': 0.0031634200610490227}

Let’s consider what is taking place under the hood at the moment. The statistics function is drawing 10000
samples from the given RBM state, and cycling it through the visible and hidden layers for 100 Block Gibbs steps
before computing the statistics. This means that, at any given time it has to hold a matrix with 10000 rows and 10
(the number of lattice sites) columns in memory, which becomes infeasible for large lattices or if we want to use more
samples to bring our standard error down. To bypass this issue, the statistics function allows us to specify the
number of Markov Chains to evolve using the RBM, and will sample from these chains multiple times to produce
enough samples. It takes the following arguments:

• num_samples: the number of samples to generate internally

• num_chains: the number of Markov chains to run in parallel (default = 0, meaning num_chains =
num_samples)

• burn_in: the number of Gibbs steps to perform before recording any samples (default = 1000)

• steps: the number of Gibbs steps to perform between each sample; increase this to reduce the autocorrelation
between samples (default = 1)

The statistics function will also return a dictionary containing the mean, standard error (of the mean) and the
variance with the keys “mean”, “std_error” and “variance”, respectively.

[9]: %time sz.statistics(nn_state, num_samples=10000, num_chains=1000, burn_in=100,
→˓steps=2)

CPU times: user 292 ms, sys: 0 ns, total: 292 ms
Wall time: 75.9 ms

[9]: {'mean': 0.548,
'variance': 0.09837783778377833,
'std_error': 0.0031365241555546537}

In addition to using less memory (since the matrix held in memory is now of size num_chains x num_sites =
1000 x 10), we’ve also achieved a decent speed boost! Next, we’ll try increasing the total number of drawn samples:

[10]: sz.statistics(nn_state, num_samples=int(1e7), num_chains=1000, burn_in=100, steps=2)

[10]: {'mean': 0.5508113799999957,
'variance': 0.09800052546254845,
'std_error': 9.899521476442609e-05}

Note how much we’ve decreased our standard error just by increasing the number of drawn samples. Finally, we can
also draw samples of measurements of the observable using the sample function:

[11]: sz.sample(nn_state, k=100, num_samples=50)

[11]: tensor([1.0000, 0.8000, 0.8000, 0.8000, 0.6000, 1.0000, 0.8000, 0.0000, 0.6000,
0.6000, 0.8000, 0.6000, 0.8000, 0.6000, 0.2000, 0.2000, 0.8000, 0.2000,
0.4000, 0.6000, 0.8000, 0.2000, 0.6000, 0.4000, 0.2000, 0.0000, 0.2000,
0.8000, 0.6000, 1.0000, 1.0000, 0.6000, 1.0000, 1.0000, 1.0000, 0.8000,
0.0000, 0.6000, 1.0000, 0.6000, 0.6000, 0.4000, 0.2000, 1.0000, 1.0000,
0.6000, 0.6000, 0.6000, 0.8000, 0.2000], dtype=torch.float64)

6.2. Calculate an observable using the Observable module 23

QuCumber Documentation, Release v1.2.2

Note that this function does not perform any fancy sampling tricks like statistics and is therefore susceptible to
“Out of Memory” errors.

6.2.2 TFIM Energy

Some observables cannot be computed directly from samples, but instead depend on the RBM as previously men-
tioned. For example, the magnetization of the TFIM simply depends on the samples the user gives as input. While we
did provide the nn_state as an argument when calling statistics_from_samples, SigmaZ ignores it. The
TFIM energy, on the other hand, is much more complicated. Consider the TFIM Hamiltonian:

𝐻 = −𝐽
∑︁
𝑖

𝜎𝑧
𝑖 𝜎

𝑧
𝑖+1 − ℎ

∑︁
𝑖

𝜎𝑥
𝑖

As our RBM was trained in the Z-basis, the off-diagonal transverse-field term is impossible to compute just from the
samples; we need to know the value of the wavefunction for each sample as well. An example for the computation
of the energy is provided in the python file quantum_ising_chain.py, which takes advantage of QuCumber’s
Observable module.

quantum_ising_chain.py comprises of a class that computes the energy of a TFIM (TFIMChainEnergy)
that inherits properties from the Observable module. To instantiate a TFIMChainEnergy object, the ℎ

𝐽 value
must be specified. The trained RBM parameters are from the first tutorial, where the example data was from the TFIM
with 10 sites at its critical point (ℎ𝐽 = 1).

[12]: h = 1

tfim_energy = TFIMChainEnergy(h)

To go ahead and calculate the mean energy and its standard error from the previously generated samples from this tu-
torial (new_samples), the statistics_from_samples function in the Observable module is called upon.

[13]: energy_stats = tfim_energy.statistics_from_samples(nn_state, new_samples)
print("Mean: %.4f" % energy_stats["mean"], "+/- %.4f" % energy_stats["std_error"])
print("Variance: %.4f" % energy_stats["variance"])

Mean: -1.2347 +/- 0.0005
Variance: 0.0022

The exact value for the energy is -1.2381.

To illustrate how quickly the energy converges as a function of the sampling step (i.e. the number of Gibbs steps to
perform to generate a new batch of samples), steps, the Convergence function in quantum_ising_chain.
py will do the trick. Convergence creates a batch of random samples initially, which is then used to generate a new
batch of samples from the RBM. The TFIM energy will be calculated at every Gibbs step. Note that this function is
not available in the QuCumber API; it is only used here as an illustrative example.

[14]: steps = 200
num_samples = 10000

dict_observables = Convergence(nn_state, tfim_energy, num_samples, steps)

energy = dict_observables["energies"]
err_energy = dict_observables["error"]

step = np.arange(steps + 1)

E0 = -1.2381

(continues on next page)

24 Chapter 6. Sampling and calculating observables

QuCumber Documentation, Release v1.2.2

(continued from previous page)

ax = plt.axes()
ax.plot(step, abs((E0 - energy) / E0) * 100, color="red")
ax.hlines(abs((E0 - energy_stats["mean"]) / E0) * 100, 0, 200, color="black")
ax.set_xlim(0, steps)
ax.set_ylim(0, 0.6)
ax.set_xlabel("Gibbs Step")
ax.set_ylabel("% Error in Energy")

[14]: Text(0, 0.5, '% Error in Energy')

One can see a brief transient period in the magnetization observable, before the state of the machine “warms up” to
equilibrium (this explains the burn_in argument we saw earlier). After that, the values fluctuate around the estimated
mean (the horizontal black line).

6.2.3 Adding observables

One may also add / subtract and multiply observables with each other or with real numbers. To illustrate this,
we will build an alternative implementation of the TFIM energy observable. First, we will introduce the built-in
NeighbourInteraction observable:

[15]: from qucumber.observables import NeighbourInteraction

The TFIM chain we trained the RBM on did not have periodic boundary conditions, so periodic_bcs=False.
Meanwhile, c specifies the between interacting spins, that is, a given site will only interact with a site c places away
from itself; we set this to 1 as the TFIM chain has nearest-neighbour interactions.

[16]: nn_inter = NeighbourInteraction(periodic_bcs=False, c=1)

Next, we need the SigmaX observable, which computes the magnetization in the X-direction:

[17]: from qucumber.observables import SigmaX

Next, we build the Hamiltonian, setting ℎ = 𝐽 = 1:

[18]: h = J = 1
sx = SigmaX()
tfim = -J * nn_inter - h * sx

6.2. Calculate an observable using the Observable module 25

QuCumber Documentation, Release v1.2.2

The same statistics of this new TFIM observable can also be calculated.

[19]: new_tfim_stats = tfim.statistics_from_samples(nn_state, new_samples)
print("Mean: %.4f" % new_tfim_stats["mean"], "+/- %.4f" % new_tfim_stats["std_error"])
print("Variance: %.4f" % new_tfim_stats["variance"])

Mean: -1.2347 +/- 0.0005
Variance: 0.0022

The statistics above match with those computed earlier.

6.2.4 Renyi Entropy and the Swap operator

We can estimate the second Renyi Entropy using the Swap operator as shown by Hastings et al. (2010). The 2nd Renyi
Entropy, in terms of the expectation of the Swap operator is given by:

𝑆2(𝐴) = − ln⟨Swap𝐴⟩

where 𝐴 is the subset of the lattice for which we wish to compute the Renyi entropy.

[20]: from qucumber.observables import SWAP

As an example, we will take the region 𝐴 consist of sites 0 through 4 (inclusive).

[21]: A = [0, 1, 2, 3, 4]
swap = SWAP(A)

swap_stats = swap.statistics_from_samples(nn_state, new_samples)
print("Mean: %.4f" % swap_stats["mean"], "+/- %.4f" % swap_stats["std_error"])
print("Variance: %.4f" % swap_stats["variance"])

Mean: 0.7937 +/- 0.0083
Variance: 0.3484

The 2nd Renyi Entropy can be computed directly from the sample mean. The standard error of the entropy, from first-
order error analysis, is given by the standard error of the Swap operator divided by the mean of the Swap operator.

[22]: S_2 = -np.log(swap_stats["mean"])
S_2_error = abs(swap_stats["std_error"] / swap_stats["mean"])

print("S_2: %.4f" % S_2, "+/- %.4f" % S_2_error)

S_2: 0.2310 +/- 0.0105

6.2.5 Custom observable

QuCumber has a built-in module called Observable which makes it easy for the user to compute any arbitrary
observable from the RBM. To see the the Observable module in action, an example observable called PIQuIL,
which inherits properties from the Observable module, is shown below.

The PIQuIL observable takes a 𝜎𝑧 measurement at a site and multiplies it by the measurement two sites away
from it. There is also a parameter, 𝑃 , that determines the strength of each of these interactions. For example,
for the dataset (−1, 1, 1,−1), (1, 1, 1, 1) and (1, 1,−1, 1) with 𝑃 = 2, the PIQuIL for each data point would be
(2(−1× 1) + 2(1×−1) = −4) , (2(1× 1) + 2(1× 1) = 4) and (2(1×−1) + 2(1× 1) = 0), respectively.

26 Chapter 6. Sampling and calculating observables

https://link.aps.org/doi/10.1103/PhysRevLett.104.157201

QuCumber Documentation, Release v1.2.2

[23]: class PIQuIL(ObservableBase):
def __init__(self, P):

self.name = "PIQuIL"
self.symbol = "Q"
self.P = P

Required : function that calculates the PIQuIL. Must be named "apply"
def apply(self, nn_state, samples):

samples = to_pm1(samples)
interaction_ = 0.0
for i in range(samples.shape[-1]):

if (i + 3) > samples.shape[-1]:
continue

else:
interaction_ += self.P * samples[:, i] * samples[:, i + 2]

return interaction_

P = 0.05
piquil = PIQuIL(P)

The apply function is contained in the Observable module, but is overwritten here. The apply function in
Observable will compute the observable itself and must take in the RBM (nn_state) and a batch of samples
as arguments. Thus, any new class inheriting from Observable that the user would like to define must contain a
function called apply that calculates this new observable. For more details on apply, we refer to the documentation:

[24]: help(ObservableBase.apply)

Help on function apply in module qucumber.observables.observable:

apply(self, nn_state, samples)
Computes the value of the observable, row-wise, on a batch of
samples.

If we think of the samples given as a set of projective measurements
in a given computational basis, this method must return the expectation
of the operator with respect to each basis state in `samples`.
It must not perform any averaging for statistical purposes, as the
proper analysis is delegated to the specialized
`statistics` and `statistics_from_samples` methods.

Must be implemented by any subclasses.

:param nn_state: The WaveFunction that drew the samples.
:type nn_state: qucumber.nn_states.WaveFunctionBase
:param samples: A batch of sample states to calculate the observable on.
:type samples: torch.Tensor
:returns: The value of the observable of each given basis state.
:rtype: torch.Tensor

Although the PIQuIL observable could technically be computed without the first argument of apply since it does
not ever use the nn_state, we still include it in the list of arguments in order to conform to the interface provided in
the ObservableBase class.

Since we have already generated new samples of data, the PIQuIL observable’s mean, standard error and variance
on the new data can be calculated with the statistics_from_samples function in the Observable module.

6.2. Calculate an observable using the Observable module 27

QuCumber Documentation, Release v1.2.2

The user must simply provide the RBM and the samples as arguments.

[25]: piquil_stats1 = piquil.statistics_from_samples(nn_state, new_samples)

The statistics_from_samples function returns a dictionary containing the mean, standard error and the vari-
ance with the keys “mean”, “std_error” and “variance”, respectively.

[26]: print(
"Mean PIQuIL: %.4f" % piquil_stats1["mean"], "+/- %.4f" % piquil_stats1["std_error

→˓"]
)
print("Variance: %.4f" % piquil_stats1["variance"])

Mean PIQuIL: 0.1754 +/- 0.0015
Variance: 0.0239

Exercise: We notice that the PIQuIL observable is essentially a scaled next-nearest-neighbours interaction. (a)
Construct an equivalent Observable object algebraically in a similar manner to the TFIM observable constructed
above. (b) Compute the statistics of this observable on new_samples, and compare to those computed using the
PIQuIL observable.

[27]: # solve the above exercise here

6.3 Estimating Statistics of Many Observables Simultaneously

One may often be concerned with estimating the statistics of many observables simultaneously. In order to avoid
excess memory usage, it makes sense to reuse the same set of samples to estimate each observable. When we need a
large number of samples however, we run into the same issue mentioned earlier: we may run out of memory storing
the samples. QuCumber provides a System object to keep track of multiple observables and estimate their statistics
efficiently.

[28]: from qucumber.observables import System
from pprint import pprint

At this point we must make a quick aside: internally, System keeps track of multiple observables through their name
field (which we saw in the definition of the PIQuIL observable). This name is returned by Python’s built-in repr
function, which is automatically called when we try to display an Observable object in Jupyter:

[29]: piquil

[29]: PIQuIL

[30]: tfim

[30]: ((-1 * NeighbourInteraction(periodic_bcs=False, c=1)) + -(1 * SigmaX))

Note how the TFIM energy observable’s name is quite complicated, due to the fact that we constructed it algebraically
as opposed to the PIQuIL observable which was built from scratch and manually assigned a name. In order to assign
a name to tfim, we do the following:

[31]: tfim.name = "TFIM"
tfim

[31]: TFIM

Now, back to System. We’d like to create a System object which keeps track of the absolute magnetization, the
energy of the chain, the Swap observable (of region 𝐴, as defined earlier), and finally, the PIQuIL observable.

28 Chapter 6. Sampling and calculating observables

QuCumber Documentation, Release v1.2.2

[32]: tfim_system = System(sz, tfim, swap, piquil)

[33]: pprint(tfim_system.statistics_from_samples(nn_state, new_samples))

{’PIQuIL’: {’mean’: 0.1754200000000003,
’std_error’: 0.0015460340818165665,
’variance’: 0.02390221382138394},

’SWAP’: {’mean’: 0.7937077159650355,
’std_error’: 0.008347777852987842,
’variance’: 0.3484269754141716},

’SigmaZ’: {’mean’: 0.5524600000000002,
’std_error’: 0.0031183597061156376,
’variance’: 0.09724167256725606},

’TFIM’: {’mean’: -1.234660072325191,
’std_error’: 0.0004716346213696688,
’variance’: 0.0022243921607451086}}

These all match with the values computed earlier. Next, we will compute these statistics from fresh samples drawn
from the RBM:

[34]: %%time
pprint(

tfim_system.statistics(
nn_state, num_samples=10000, num_chains=1000, burn_in=100, steps=2

)
)

{’PIQuIL’: {’mean’: 0.17418,
’std_error’: 0.0015624906072324945,
’variance’: 0.02441376897689769},

’SWAP’: {’mean’: 0.7977556285445141,
’std_error’: 0.006037075970673986,
’variance’: 0.3644628627568925},

’SigmaZ’: {’mean’: 0.55228,
’std_error’: 0.0031312075316178864,
’variance’: 0.09804460606060576},

’TFIM’: {’mean’: -1.235210919302773,
’std_error’: 0.000462796110346464,
’variance’: 0.0021418023975181646}}

CPU times: user 913 ms, sys: 0 ns, total: 913 ms
Wall time: 232 ms

Compare this to computing these statistics on each observable individually:

[35]: %%time
pprint(

{
obs.name: obs.statistics(

nn_state, num_samples=10000, num_chains=1000, burn_in=100, steps=2
)
for obs in [piquil, swap, sz, tfim]

}
)

{’PIQuIL’: {’mean’: 0.17683000000000001,
’std_error’: 0.0015656501001256947,
’variance’: 0.024512602360235978},

’SWAP’: {’mean’: 0.7894748061589013,

(continues on next page)

6.3. Estimating Statistics of Many Observables Simultaneously 29

QuCumber Documentation, Release v1.2.2

(continued from previous page)

’std_error’: 0.005957763454588121,
’variance’: 0.3549494538082578},

’SigmaZ’: {’mean’: 0.557,
’std_error’: 0.003132424174360939,
’variance’: 0.09812081208120808},

’TFIM’: {’mean’: -1.2349736426229931,
’std_error’: 0.00047315568939076296,
’variance’: 0.0022387630640284817}}

CPU times: user 1.96 s, sys: 3.97 ms, total: 1.96 s
Wall time: 493 ms

Note the slowdown. This is, as mentioned before, due to the fact that the System object uses the same samples to
estimate statistics for all of the observables it is keeping track of.

6.3.1 Template for your custom observable

Here is a generic template for you to try using the Observable module yourself.

[36]: import torch
from qucumber.observables import ObservableBase

class YourObservable(ObservableBase):
def __init__(self, your_constants):

self.your_constants = your_constants
self.name = "Observable_Name"

The algebraic symbol representing this Observable.
Returned by Python's built-in str() function
self.symbol = "O"

def apply(self, nn_state, samples):
arguments of "apply" must be in this order

calculate your observable for each data point
obs = torch.tensor([42] * len(samples))

make sure the observables are on the same device and have the
same dtype as the samples
obs = obs.to(samples)

return a torch tensor containing the observable values
return obs

30 Chapter 6. Sampling and calculating observables

CHAPTER

SEVEN

TRAINING WHILE MONITORING OBSERVABLES

As seen in the first tutorial that went through reconstructing the wavefunction describing the TFIM with 10 sites at
its critical point, the user can evaluate the training in real time with the MetricEvaluator and custom functions.
What is most likely more impactful in many cases is to calculate an observable, like the energy, during the training
process. This is slightly more computationally involved than using the MetricEvaluator to evaluate functions
because observables require that samples be drawn from the RBM.

Luckily, QuCumber also has a module very similar to the MetricEvaluator, but for observables. This is called
the ObservableEvaluator. This tutorial uses the ObservableEvaluator to calculate the energy during the
training on the TFIM data in the first tutorial. We will use the same training hyperparameters as before.

It is assumed that the user has worked through Tutorial 3 beforehand. Recall that quantum_ising_chain.py
contains the TFIMChainEnergy class that inherits from the Observable module. The exact ground-state energy
is −1.2381.

[1]: import os.path

import numpy as np
import matplotlib.pyplot as plt

from qucumber.nn_states import PositiveWaveFunction
from qucumber.callbacks import ObservableEvaluator

import qucumber.utils.data as data

from quantum_ising_chain import TFIMChainEnergy

[2]: train_data = data.load_data(
os.path.join("..", "Tutorial1_TrainPosRealWaveFunction", "tfim1d_data.txt")

)[0]

nv = train_data.shape[-1]
nh = nv

nn_state = PositiveWaveFunction(num_visible=nv, num_hidden=nh)

epochs = 1000
pbs = 100 # pos_batch_size
nbs = 200 # neg_batch_size
lr = 0.01
k = 10

period = 100

(continues on next page)

31

QuCumber Documentation, Release v1.2.2

(continued from previous page)

h = 1
num_samples = 10000
burn_in = 100
steps = 100

tfim_energy = TFIMChainEnergy(h)

Now, the ObservableEvaluator can be called. The ObservableEvaluator requires the following argu-
ments.

1. period: the frequency of the training evaluators being calculated (e.g. period=200 means that the
MetricEvaluator will compute the desired metrics every 200 epochs)

2. A list of Observable objects you would like to reference to evaluate the training (arguments required
for generating samples to calculate the observables are keyword arguments placed after the list). The
ObservableEvaluator uses a System object (discussed in the previous tutorial) under the hood in or-
der to estimate statistics efficiently.

The following additional arguments are needed to calculate the statistics on the generated samples during training
(these are the arguments of the statistics function in the Observable module, minus the nn_state argu-
ment; this gets passed in as an argument to fit). For more detail on these arguments, refer to either the previous
tutorial or the documentation for Observable.statistics.

• num_samples: the number of samples to generate internally

• num_chains: the number of Markov chains to run in parallel (default = 0)

• burn_in: the number of Gibbs steps to perform before recording any samples (default = 1000)

• steps: the number of Gibbs steps to perform between each sample (default = 1)

The training evaluators can be printed out by setting the verbose keyword argument to True.

[3]: callbacks = [
ObservableEvaluator(

period,
[tfim_energy],
verbose=True,
num_samples=num_samples,
burn_in=burn_in,
steps=steps,

)
]

nn_state.fit(
train_data,
epochs=epochs,
pos_batch_size=pbs,
neg_batch_size=nbs,
lr=lr,
k=k,
callbacks=callbacks,

)

Epoch: 100
TFIMChainEnergy:
mean: -1.193770 variance: 0.024622 std_error: 0.001569

Epoch: 200
TFIMChainEnergy:

(continues on next page)

32 Chapter 7. Training while monitoring observables

QuCumber Documentation, Release v1.2.2

(continued from previous page)

mean: -1.215802 variance: 0.013568 std_error: 0.001165
Epoch: 300

TFIMChainEnergy:
mean: -1.221930 variance: 0.009081 std_error: 0.000953

Epoch: 400
TFIMChainEnergy:
mean: -1.227180 variance: 0.006347 std_error: 0.000797

Epoch: 500
TFIMChainEnergy:
mean: -1.230074 variance: 0.004502 std_error: 0.000671

Epoch: 600
TFIMChainEnergy:
mean: -1.232001 variance: 0.003641 std_error: 0.000603

Epoch: 700
TFIMChainEnergy:
mean: -1.233434 variance: 0.002839 std_error: 0.000533

Epoch: 800
TFIMChainEnergy:
mean: -1.235324 variance: 0.002306 std_error: 0.000480

Epoch: 900
TFIMChainEnergy:
mean: -1.235313 variance: 0.001936 std_error: 0.000440

Epoch: 1000
TFIMChainEnergy:
mean: -1.235257 variance: 0.001590 std_error: 0.000399

The callbacks list returns a list of dictionaries. The mean, standard error and the variance at each epoch can be
accessed as follows:

[4]: # Note that the name of the observable class that the user makes
must be what comes after callbacks[0].
energies = callbacks[0].TFIMChainEnergy.mean

Alternatively, we can use the usual dictionary/list subscripting
syntax, which is useful in the case where the observable's name
contains special characters
errors = callbacks[0]["TFIMChainEnergy"].std_error
variance = callbacks[0]["TFIMChainEnergy"]["variance"]

A plot of the energy as a function of the training cycle is presented below.

[5]: epoch = np.arange(period, epochs + 1, period)

E0 = -1.2381

plt.figure(figsize=(10, 5))
ax = plt.axes()
ax.plot(epoch, energies, color="red")
ax.set_xlim(period, epochs)
ax.axhline(E0, color="black")
ax.fill_between(epoch, energies - errors, energies + errors, alpha=0.2, color="black")
ax.set_xlabel("Epoch")
ax.set_ylabel("Energy")
ax.grid()

33

QuCumber Documentation, Release v1.2.2

34 Chapter 7. Training while monitoring observables

CHAPTER

EIGHT

RBM

class qucumber.rbm.BinaryRBM(num_visible, num_hidden, zero_weights=False, gpu=True)
Bases: torch.nn.Module

effective_energy(v)
The effective energies of the given visible states.

ℰ(𝑣) = −
∑︁
𝑗

𝑏𝑗𝑣𝑗 −
∑︁
𝑖

log

⎡⎣1 + exp

⎛⎝𝑐𝑖 +∑︁
𝑗

𝑊𝑖𝑗𝑣𝑗

⎞⎠⎤⎦
Parameters v (torch.Tensor) – The visible states.

Returns The effective energies of the given visible states.

Return type torch.Tensor

effective_energy_gradient(v, reduce=True)
The gradients of the effective energies for the given visible states.

Parameters

• v (torch.Tensor) – The visible states.

• reduce – If True, will sum over the gradients resulting from each visible state. Otherwise
will return a batch of gradient vectors.

Returns Will return a vector (or matrix if reduce=False and multiple visible states were given
as a matrix) containing the gradients for all parameters (computed on the given visible states
v).

Return type torch.Tensor

gibbs_steps(k, initial_state, overwrite=False)
Performs k steps of Block Gibbs sampling. One step consists of sampling the hidden state ℎ from the
conditional distribution 𝑝(ℎ | 𝑣), and sampling the visible state 𝑣 from the conditional distribution 𝑝(𝑣 |ℎ).

Parameters

• k (int) – Number of Block Gibbs steps.

• initial_state (torch.Tensor) – The initial state of the Markov Chains.

• overwrite (bool) – Whether to overwrite the initial_state tensor, if it is provided.

initialize_parameters(zero_weights=False)
Randomize the parameters of the RBM

partition(space)
Compute the partition function of the RBM.

35

https://pytorch.org/docs/stable/nn.html#torch.nn.Module
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/functions.html#int
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/functions.html#bool

QuCumber Documentation, Release v1.2.2

Parameters space (torch.Tensor) – A rank 2 tensor of the visible space.

Returns The value of the partition function evaluated at the current state of the RBM.

Return type torch.Tensor

prob_h_given_v(v, out=None)
Given a visible unit configuration, compute the probability vector of the hidden units being on.

Parameters

• h (torch.Tensor) – The hidden unit.

• out (torch.Tensor) – The output tensor to write to.

Returns The probability of hidden units being active given the visible state.

Return type torch.Tensor

prob_v_given_h(h, out=None)
Given a hidden unit configuration, compute the probability vector of the visible units being on.

Parameters

• h (torch.Tensor) – The hidden unit

• out (torch.Tensor) – The output tensor to write to.

Returns The probability of visible units being active given the hidden state.

Return type torch.Tensor

sample_h_given_v(v, out=None)
Sample/generate a hidden state given a visible state.

Parameters

• h (torch.Tensor) – The visible state.

• out (torch.Tensor) – The output tensor to write to.

Returns The sampled hidden state.

Return type torch.Tensor

sample_v_given_h(h, out=None)
Sample/generate a visible state given a hidden state.

Parameters

• h (torch.Tensor) – The hidden state.

• out (torch.Tensor) – The output tensor to write to.

Returns The sampled visible state.

Return type torch.Tensor

36 Chapter 8. RBM

https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor

CHAPTER

NINE

QUANTUM STATES

9.1 Positive WaveFunction

class qucumber.nn_states.PositiveWaveFunction(num_visible, num_hidden=None,
gpu=True, module=None)

Bases: qucumber.nn_states.WaveFunctionBase

Class capable of learning wavefunctions with no phase.

Parameters

• num_visible (int) – The number of visible units, ie. the size of the system being
learned.

• num_hidden (int) – The number of hidden units in the internal RBM. Defaults to the
number of visible units.

• gpu (bool) – Whether to perform computations on the default GPU.

• module (qucumber.rbm.BinaryRBM) – An instance of a BinaryRBM module to use
for density estimation. Will be copied to the default GPU if gpu=True (if it isn’t already
there). If None, will initialize a BinaryRBM from scratch.

amplitude(v)
Compute the (unnormalized) amplitude of a given vector/matrix of visible states.

amplitude(𝜎) = |𝜓𝜆(𝜎)| = 𝑒−ℰ𝜆(𝜎)/2

Parameters v (torch.Tensor) – visible states 𝜎

Returns Matrix/vector containing the amplitudes of v

Return type torch.Tensor

static autoload(location, gpu=False)
Initializes a WaveFunction from the parameters in the given location.

Parameters

• location (str or file) – The location to load the model parameters from.

• gpu (bool) – Whether the returned model should be on the GPU.

Returns A new WaveFunction initialized from the given parameters. The returned WaveFunc-
tion will be of whichever type this function was called on.

compute_batch_gradients(k, samples_batch, neg_batch)
Compute the gradients of a batch of the training data (samples_batch).

Parameters

37

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

QuCumber Documentation, Release v1.2.2

• k (int) – Number of contrastive divergence steps in training.

• samples_batch (torch.Tensor) – Batch of the input samples.

• neg_batch (torch.Tensor) – Batch of the input samples for computing the negative
phase.

Returns List containing the gradients of the parameters.

Return type list

compute_normalization(space)
Compute the normalization constant of the wavefunction.

𝑍𝜆 =

√︃∑︁
𝜎

|𝜓𝜆|2 =

√︃∑︁
𝜎

𝑝𝜆(𝜎)

Parameters space (torch.Tensor) – A rank 2 tensor of the entire visible space.

property device
The device that the model is on.

fit(data, epochs=100, pos_batch_size=100, neg_batch_size=None, k=1, lr=0.001, progbar=False,
starting_epoch=1, time=False, callbacks=None, optimizer=torch.optim.SGD, **kwargs)
Train the WaveFunction.

Parameters

• data (np.array) – The training samples

• epochs (int) – The number of full training passes through the dataset. Technically, this
specifies the index of the last training epoch, which is relevant if starting_epoch is being
set.

• pos_batch_size (int) – The size of batches for the positive phase taken from the
data.

• neg_batch_size (int) – The size of batches for the negative phase taken from the
data. Defaults to pos_batch_size.

• k (int) – The number of contrastive divergence steps.

• lr (float) – Learning rate

• progbar (bool or str) – Whether or not to display a progress bar. If “notebook” is
passed, will use a Jupyter notebook compatible progress bar.

• starting_epoch (int) – The epoch to start from. Useful if continuing training from
a previous state.

• callbacks (list[qucumber.callbacks.CallbackBase]) – Callbacks to run
while training.

• optimizer (torch.optim.Optimizer) – The constructor of a torch optimizer.

• kwargs – Keyword arguments to pass to the optimizer

generate_hilbert_space(size=None, device=None)
Generates Hilbert space of dimension 2size.

Parameters

• size (int) – The size of each element of the Hilbert space. Defaults to the number of
visible units.

38 Chapter 9. Quantum States

https://docs.python.org/3/library/functions.html#int
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/stdtypes.html#list
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://pytorch.org/docs/stable/optim.html#torch.optim.Optimizer
https://docs.python.org/3/library/functions.html#int

QuCumber Documentation, Release v1.2.2

• device – The device to create the Hilbert space matrix on. Defaults to the device this
model is on.

Returns A tensor with all the basis states of the Hilbert space.

Return type torch.Tensor

gradient(v)
Compute the gradient of the effective energy for a batch of states.

∇𝜆ℰ𝜆(𝜎)

Parameters v (torch.Tensor) – visible states 𝜎

Returns A single tensor containing all of the parameter gradients.

Return type torch.Tensor

load(location)
Loads the WaveFunction parameters from the given location ignoring any metadata stored in the file.
Overwrites the WaveFunction’s parameters.

Note: The WaveFunction object on which this function is called must have the same parameter shapes as
the one who’s parameters are being loaded.

Parameters location (str or file) – The location to load the WaveFunction parameters
from.

property max_size
Maximum size of the Hilbert space for full enumeration

property networks
A list of the names of the internal RBMs.

phase(v)
Compute the phase of a given vector/matrix of visible states.

In the case of a PositiveWaveFunction, the phase is just zero.

Parameters v (torch.Tensor) – visible states 𝜎

Returns Matrix/vector containing the phases of v

Return type torch.Tensor

probability(v, Z)
Evaluates the probability of the given vector(s) of visible states.

Parameters

• v (torch.Tensor) – The visible states.

• Z (float) – The partition function.

Returns The probability of the given vector(s) of visible units.

Return type torch.Tensor

psi(v)
Compute the (unnormalized) wavefunction of a given vector/matrix of visible states.

𝜓𝜆(𝜎) = 𝑒−ℰ𝜆(𝜎)/2

9.1. Positive WaveFunction 39

https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/stdtypes.html#str
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/functions.html#float
https://pytorch.org/docs/stable/tensors.html#torch.Tensor

QuCumber Documentation, Release v1.2.2

Parameters v (torch.Tensor) – visible states 𝜎

Returns Complex object containing the value of the wavefunction for each visible state

Return type torch.Tensor

property rbm_am
The RBM to be used to learn the wavefunction amplitude.

reinitialize_parameters()
Randomize the parameters of the internal RBMs.

sample(k, num_samples=1, initial_state=None, overwrite=False)
Performs k steps of Block Gibbs sampling. One step consists of sampling the hidden state ℎ from the
conditional distribution 𝑝𝜆(ℎ|𝑣), and sampling the visible state 𝑣 from the conditional distribution 𝑝𝜆(𝑣|ℎ).

Parameters

• k (int) – Number of Block Gibbs steps.

• num_samples (int) – The number of samples to generate.

• initial_state (torch.Tensor) – The initial state of the Markov Chains. If given,
num_samples will be ignored.

• overwrite (bool) – Whether to overwrite the initial_state tensor, if it is provided.

save(location, metadata=None)
Saves the WaveFunction parameters to the given location along with any given metadata.

Parameters

• location (str or file) – The location to save the data.

• metadata (dict) – Any extra metadata to store alongside the WaveFunction parame-
ters.

property stop_training
If True, will not train.

If this property is set to True during the training cycle, training will terminate once the current batch or
epoch ends (depending on when stop_training was set).

subspace_vector(num, size=None, device=None)
Generates a single vector from the Hilbert space of dimension 2size.

Parameters

• size (int) – The size of each element of the Hilbert space.

• num (int) – The specific vector to return from the Hilbert space. Since the Hilbert space
can be represented by the set of binary strings of length size, num is equivalent to the
decimal representation of the returned vector.

• device – The device to create the vector on. Defaults to the device this model is on.

Returns A state from the Hilbert space.

Return type torch.Tensor

40 Chapter 9. Quantum States

https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://pytorch.org/docs/stable/tensors.html#torch.Tensor

QuCumber Documentation, Release v1.2.2

9.2 Complex WaveFunction

class qucumber.nn_states.ComplexWaveFunction(num_visible, num_hidden=None, uni-
tary_dict=None, gpu=True, mod-
ule=None)

Bases: qucumber.nn_states.WaveFunctionBase

Class capable of learning wavefunctions with a non-zero phase.

Parameters

• num_visible (int) – The number of visible units, ie. the size of the system being
learned.

• num_hidden (int) – The number of hidden units in both internal RBMs. Defaults to the
number of visible units.

• unitary_dict (dict[str, torch.Tensor]) – A dictionary mapping unitary
names to their matrix representations.

• gpu (bool) – Whether to perform computations on the default GPU.

• module (qucumber.rbm.BinaryRBM) – An instance of a BinaryRBM module to use
for density estimation; The given RBM object will be used to estimate the amplitude of the
wavefunction, while a copy will be used to estimate the phase of the wavefunction. Will be
copied to the default GPU if gpu=True (if it isn’t already there). If None, will initialize the
BinaryRBMs from scratch.

amplitude(v)
Compute the (unnormalized) amplitude of a given vector/matrix of visible states.

amplitude(𝜎) = |𝜓𝜆𝜇(𝜎)| = 𝑒−ℰ𝜆(𝜎)/2

Parameters v (torch.Tensor) – visible states 𝜎.

Returns Vector containing the amplitudes of the given states.

Return type torch.Tensor

static autoload(location, gpu=False)
Initializes a WaveFunction from the parameters in the given location.

Parameters

• location (str or file) – The location to load the model parameters from.

• gpu (bool) – Whether the returned model should be on the GPU.

Returns A new WaveFunction initialized from the given parameters. The returned WaveFunc-
tion will be of whichever type this function was called on.

compute_batch_gradients(k, samples_batch, neg_batch, bases_batch=None)
Compute the gradients of a batch of the training data (samples_batch).

If measurements are taken in bases other than the reference basis, a list of bases (bases_batch) must also
be provided.

Parameters

• k (int) – Number of contrastive divergence steps in training.

• samples_batch (torch.Tensor) – Batch of the input samples.

• neg_batch (torch.Tensor) – Batch of the input samples for computing the negative
phase.

9.2. Complex WaveFunction 41

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/functions.html#bool
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor

QuCumber Documentation, Release v1.2.2

• bases_batch (np.array) – Batch of the input bases corresponding to the samples in
samples_batch.

Returns List containing the gradients of the parameters.

Return type list

compute_normalization(space)
Compute the normalization constant of the wavefunction.

𝑍𝜆 =

√︃∑︁
𝜎

|𝜓𝜆𝜇|2 =

√︃∑︁
𝜎

𝑝𝜆(𝜎)

Parameters space (torch.Tensor) – A rank 2 tensor of the entire visible space.

property device
The device that the model is on.

fit(data, epochs=100, pos_batch_size=100, neg_batch_size=None, k=1, lr=0.001, input_bases=None,
progbar=False, starting_epoch=1, time=False, callbacks=None, optimizer=torch.optim.SGD,
**kwargs)
Train the WaveFunction.

Parameters

• data (np.array) – The training samples

• epochs (int) – The number of full training passes through the dataset. Technically, this
specifies the index of the last training epoch, which is relevant if starting_epoch is being
set.

• pos_batch_size (int) – The size of batches for the positive phase taken from the
data.

• neg_batch_size (int) – The size of batches for the negative phase taken from the
data. Defaults to pos_batch_size.

• k (int) – The number of contrastive divergence steps.

• lr (float) – Learning rate

• input_bases (np.array) – The measurement bases for each sample. Must be pro-
vided if training a ComplexWaveFunction.

• progbar (bool or str) – Whether or not to display a progress bar. If “notebook” is
passed, will use a Jupyter notebook compatible progress bar.

• starting_epoch (int) – The epoch to start from. Useful if continuing training from
a previous state.

• callbacks (list[qucumber.callbacks.CallbackBase]) – Callbacks to run
while training.

• optimizer (torch.optim.Optimizer) – The constructor of a torch optimizer.

• kwargs – Keyword arguments to pass to the optimizer

generate_hilbert_space(size=None, device=None)
Generates Hilbert space of dimension 2size.

Parameters

• size (int) – The size of each element of the Hilbert space. Defaults to the number of
visible units.

42 Chapter 9. Quantum States

https://docs.python.org/3/library/stdtypes.html#list
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://pytorch.org/docs/stable/optim.html#torch.optim.Optimizer
https://docs.python.org/3/library/functions.html#int

QuCumber Documentation, Release v1.2.2

• device – The device to create the Hilbert space matrix on. Defaults to the device this
model is on.

Returns A tensor with all the basis states of the Hilbert space.

Return type torch.Tensor

gradient(basis, sample)
Compute the gradient of a sample, measured in different bases.

Parameters

• basis (np.array) – A set of bases.

• sample (np.array) – A sample to compute the gradient of.

Returns A list of 2 tensors containing the parameters of each of the internal RBMs.

Return type list[torch.Tensor]

load(location)
Loads the WaveFunction parameters from the given location ignoring any metadata stored in the file.
Overwrites the WaveFunction’s parameters.

Note: The WaveFunction object on which this function is called must have the same parameter shapes as
the one who’s parameters are being loaded.

Parameters location (str or file) – The location to load the WaveFunction parameters
from.

property max_size
Maximum size of the Hilbert space for full enumeration

property networks
A list of the names of the internal RBMs.

phase(v)
Compute the phase of a given vector/matrix of visible states.

phase(𝜎) = −ℰ𝜇(𝜎)/2

Parameters v (torch.Tensor) – visible states 𝜎.

Returns Vector containing the phases of the given states.

Return type torch.Tensor

probability(v, Z)
Evaluates the probability of the given vector(s) of visible states.

Parameters

• v (torch.Tensor) – The visible states.

• Z (float) – The partition function.

Returns The probability of the given vector(s) of visible units.

Return type torch.Tensor

9.2. Complex WaveFunction 43

https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/stdtypes.html#list
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/stdtypes.html#str
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/functions.html#float
https://pytorch.org/docs/stable/tensors.html#torch.Tensor

QuCumber Documentation, Release v1.2.2

psi(v)
Compute the (unnormalized) wavefunction of a given vector/matrix of visible states.

𝜓𝜆𝜇(𝜎) = 𝑒−[ℰ𝜆(𝜎)+𝑖ℰ𝜇(𝜎)]/2

Parameters v (torch.Tensor) – visible states 𝜎

Returns Complex object containing the value of the wavefunction for each visible state

Return type torch.Tensor

property rbm_am
The RBM to be used to learn the wavefunction amplitude.

property rbm_ph
RBM used to learn the wavefunction phase.

reinitialize_parameters()
Randomize the parameters of the internal RBMs.

sample(k, num_samples=1, initial_state=None, overwrite=False)
Performs k steps of Block Gibbs sampling. One step consists of sampling the hidden state ℎ from the
conditional distribution 𝑝𝜆(ℎ|𝑣), and sampling the visible state 𝑣 from the conditional distribution 𝑝𝜆(𝑣|ℎ).

Parameters

• k (int) – Number of Block Gibbs steps.

• num_samples (int) – The number of samples to generate.

• initial_state (torch.Tensor) – The initial state of the Markov Chains. If given,
num_samples will be ignored.

• overwrite (bool) – Whether to overwrite the initial_state tensor, if it is provided.

save(location, metadata=None)
Saves the WaveFunction parameters to the given location along with any given metadata.

Parameters

• location (str or file) – The location to save the data.

• metadata (dict) – Any extra metadata to store alongside the WaveFunction parame-
ters.

property stop_training
If True, will not train.

If this property is set to True during the training cycle, training will terminate once the current batch or
epoch ends (depending on when stop_training was set).

subspace_vector(num, size=None, device=None)
Generates a single vector from the Hilbert space of dimension 2size.

Parameters

• size (int) – The size of each element of the Hilbert space.

• num (int) – The specific vector to return from the Hilbert space. Since the Hilbert space
can be represented by the set of binary strings of length size, num is equivalent to the
decimal representation of the returned vector.

• device – The device to create the vector on. Defaults to the device this model is on.

Returns A state from the Hilbert space.

Return type torch.Tensor

44 Chapter 9. Quantum States

https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://pytorch.org/docs/stable/tensors.html#torch.Tensor

QuCumber Documentation, Release v1.2.2

9.3 Abstract WaveFunction

Note: This is an Abstract Base Class, it is not meant to be used directly. The following API reference is mostly for
developers.

class qucumber.nn_states.WaveFunctionBase
Bases: abc.ABC

Abstract Base Class for WaveFunctions.

amplitude(v)
Compute the (unnormalized) amplitude of a given vector/matrix of visible states.

amplitude(𝜎) = |𝜓(𝜎)|

Parameters v (torch.Tensor) – visible states 𝜎

Returns Matrix/vector containing the amplitudes of v

Return type torch.Tensor

abstract static autoload(location, gpu=False)
Initializes a WaveFunction from the parameters in the given location.

Parameters

• location (str or file) – The location to load the model parameters from.

• gpu (bool) – Whether the returned model should be on the GPU.

Returns A new WaveFunction initialized from the given parameters. The returned WaveFunc-
tion will be of whichever type this function was called on.

compute_batch_gradients(k, samples_batch, neg_batch, bases_batch=None)
Compute the gradients of a batch of the training data (samples_batch).

If measurements are taken in bases other than the reference basis, a list of bases (bases_batch) must also
be provided.

Parameters

• k (int) – Number of contrastive divergence steps in training.

• samples_batch (torch.Tensor) – Batch of the input samples.

• neg_batch (torch.Tensor) – Batch of the input samples for computing the negative
phase.

• bases_batch (np.array) – Batch of the input bases corresponding to the samples in
samples_batch.

Returns List containing the gradients of the parameters.

Return type list

compute_normalization(space)
Compute the normalization constant of the wavefunction.

𝑍𝜆 =

√︃∑︁
𝜎

|𝜓𝜆𝜇|2 =

√︃∑︁
𝜎

𝑝𝜆(𝜎)

Parameters space (torch.Tensor) – A rank 2 tensor of the entire visible space.

9.3. Abstract WaveFunction 45

https://docs.python.org/3/library/abc.html#abc.ABC
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/stdtypes.html#list
https://pytorch.org/docs/stable/tensors.html#torch.Tensor

QuCumber Documentation, Release v1.2.2

abstract property device
The device that the model is on.

fit(data, epochs=100, pos_batch_size=100, neg_batch_size=None, k=1, lr=0.001, input_bases=None,
progbar=False, starting_epoch=1, time=False, callbacks=None, optimizer=torch.optim.SGD,
**kwargs)
Train the WaveFunction.

Parameters

• data (np.array) – The training samples

• epochs (int) – The number of full training passes through the dataset. Technically, this
specifies the index of the last training epoch, which is relevant if starting_epoch is being
set.

• pos_batch_size (int) – The size of batches for the positive phase taken from the
data.

• neg_batch_size (int) – The size of batches for the negative phase taken from the
data. Defaults to pos_batch_size.

• k (int) – The number of contrastive divergence steps.

• lr (float) – Learning rate

• input_bases (np.array) – The measurement bases for each sample. Must be pro-
vided if training a ComplexWaveFunction.

• progbar (bool or str) – Whether or not to display a progress bar. If “notebook” is
passed, will use a Jupyter notebook compatible progress bar.

• starting_epoch (int) – The epoch to start from. Useful if continuing training from
a previous state.

• callbacks (list[qucumber.callbacks.CallbackBase]) – Callbacks to run
while training.

• optimizer (torch.optim.Optimizer) – The constructor of a torch optimizer.

• kwargs – Keyword arguments to pass to the optimizer

generate_hilbert_space(size=None, device=None)
Generates Hilbert space of dimension 2size.

Parameters

• size (int) – The size of each element of the Hilbert space. Defaults to the number of
visible units.

• device – The device to create the Hilbert space matrix on. Defaults to the device this
model is on.

Returns A tensor with all the basis states of the Hilbert space.

Return type torch.Tensor

abstract gradient()
Compute the gradient of a set of samples.

load(location)
Loads the WaveFunction parameters from the given location ignoring any metadata stored in the file.
Overwrites the WaveFunction’s parameters.

46 Chapter 9. Quantum States

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://pytorch.org/docs/stable/optim.html#torch.optim.Optimizer
https://docs.python.org/3/library/functions.html#int
https://pytorch.org/docs/stable/tensors.html#torch.Tensor

QuCumber Documentation, Release v1.2.2

Note: The WaveFunction object on which this function is called must have the same parameter shapes as
the one who’s parameters are being loaded.

Parameters location (str or file) – The location to load the WaveFunction parameters
from.

property max_size
Maximum size of the Hilbert space for full enumeration

abstract property networks
A list of the names of the internal RBMs.

abstract phase(v)
Compute the phase of a given vector/matrix of visible states.

phase(𝜎)

Parameters v (torch.Tensor) – visible states 𝜎

Returns Matrix/vector containing the phases of v

Return type torch.Tensor

probability(v, Z)
Evaluates the probability of the given vector(s) of visible states.

Parameters

• v (torch.Tensor) – The visible states.

• Z (float) – The partition function.

Returns The probability of the given vector(s) of visible units.

Return type torch.Tensor

abstract psi(v)
Compute the (unnormalized) wavefunction of a given vector/matrix of visible states.

𝜓(𝜎)

Parameters v (torch.Tensor) – visible states 𝜎

Returns Complex object containing the value of the wavefunction for each visible state

Return type torch.Tensor

abstract property rbm_am
The RBM to be used to learn the wavefunction amplitude.

reinitialize_parameters()
Randomize the parameters of the internal RBMs.

sample(k, num_samples=1, initial_state=None, overwrite=False)
Performs k steps of Block Gibbs sampling. One step consists of sampling the hidden state ℎ from the
conditional distribution 𝑝𝜆(ℎ|𝑣), and sampling the visible state 𝑣 from the conditional distribution 𝑝𝜆(𝑣|ℎ).

Parameters

• k (int) – Number of Block Gibbs steps.

• num_samples (int) – The number of samples to generate.

9.3. Abstract WaveFunction 47

https://docs.python.org/3/library/stdtypes.html#str
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/functions.html#float
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

QuCumber Documentation, Release v1.2.2

• initial_state (torch.Tensor) – The initial state of the Markov Chains. If given,
num_samples will be ignored.

• overwrite (bool) – Whether to overwrite the initial_state tensor, if it is provided.

save(location, metadata=None)
Saves the WaveFunction parameters to the given location along with any given metadata.

Parameters

• location (str or file) – The location to save the data.

• metadata (dict) – Any extra metadata to store alongside the WaveFunction parame-
ters.

property stop_training
If True, will not train.

If this property is set to True during the training cycle, training will terminate once the current batch or
epoch ends (depending on when stop_training was set).

subspace_vector(num, size=None, device=None)
Generates a single vector from the Hilbert space of dimension 2size.

Parameters

• size (int) – The size of each element of the Hilbert space.

• num (int) – The specific vector to return from the Hilbert space. Since the Hilbert space
can be represented by the set of binary strings of length size, num is equivalent to the
decimal representation of the returned vector.

• device – The device to create the vector on. Defaults to the device this model is on.

Returns A state from the Hilbert space.

Return type torch.Tensor

48 Chapter 9. Quantum States

https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://pytorch.org/docs/stable/tensors.html#torch.Tensor

CHAPTER

TEN

CALLBACKS

class qucumber.callbacks.CallbackBase
Base class for callbacks.

on_batch_end(nn_state, epoch, batch)
Called at the end of each batch.

Parameters

• nn_state (qucumber.nn_states.WaveFunctionBase) – The WaveFunction
being trained.

• epoch (int) – The current epoch.

• batch (int) – The current batch index.

on_batch_start(nn_state, epoch, batch)
Called at the start of each batch.

Parameters

• nn_state (qucumber.nn_states.WaveFunctionBase) – The WaveFunction
being trained.

• epoch (int) – The current epoch.

• batch (int) – The current batch index.

on_epoch_end(nn_state, epoch)
Called at the end of each epoch.

Parameters

• nn_state (qucumber.nn_states.WaveFunctionBase) – The WaveFunction
being trained.

• epoch (int) – The current epoch.

on_epoch_start(nn_state, epoch)
Called at the start of each epoch.

Parameters

• nn_state (qucumber.nn_states.WaveFunctionBase) – The WaveFunction
being trained.

• epoch (int) – The current epoch.

on_train_end(nn_state)
Called at the end of the training cycle.

49

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

QuCumber Documentation, Release v1.2.2

Parameters nn_state (qucumber.nn_states.WaveFunctionBase) – The Wave-
Function being trained.

on_train_start(nn_state)
Called at the start of the training cycle.

Parameters nn_state (qucumber.nn_states.WaveFunctionBase) – The Wave-
Function being trained.

class qucumber.callbacks.LambdaCallback(on_train_start=None, on_train_end=None,
on_epoch_start=None, on_epoch_end=None,
on_batch_start=None, on_batch_end=None)

Class for creating simple callbacks.

This callback is constructed using the passed functions that will be called at the appropriate time.

Parameters

• on_train_start (callable or None) – A function to be called at the start of the
training cycle. Must follow the same signature as CallbackBase.on_train_start.

• on_train_end (callable or None) – A function to be called at the end of the train-
ing cycle. Must follow the same signature as CallbackBase.on_train_end.

• on_epoch_start (callable or None) – A function to be called at the start of every
epoch. Must follow the same signature as CallbackBase.on_epoch_start.

• on_epoch_end (callable or None) – A function to be called at the end of every
epoch. Must follow the same signature as CallbackBase.on_epoch_end.

• on_batch_start (callable or None) – A function to be called at the start of every
batch. Must follow the same signature as CallbackBase.on_batch_start.

• on_batch_end (callable or None) – A function to be called at the end of every
batch. Must follow the same signature as CallbackBase.on_batch_end.

class qucumber.callbacks.ModelSaver(period, folder_path, file_name, save_initial=True, meta-
data=None, metadata_only=False)

Callback which allows model parameters (along with some metadata) to be saved to disk at regular intervals.

This callback is called at the end of each epoch. If save_initial is True, will also be called at the start of the
training cycle.

Parameters

• period (int) – Frequency of model saving (in epochs).

• folder_path (str) – The directory in which to save the files

• file_name (str) – The name of the output files. Should be a format string with one
blank, which will be filled with either the epoch number or the word “initial”.

• save_initial (bool) – Whether to save the initial parameters (and metadata).

• metadata (callable or dict or None) – The metadata to save to disk with the
model parameters Can be either a function or a dictionary. In the case of a function, it must
take 2 arguments the RBM being trained, and the current epoch number, and then return a
dictionary containing the metadata to be saved.

• metadata_only (bool) – Whether to save only the metadata to disk.

class qucumber.callbacks.Logger(period, logger_fn=<built-in function print>, msg_gen=None,
**msg_gen_kwargs)

Callback which logs output at regular intervals.

50 Chapter 10. Callbacks

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool

QuCumber Documentation, Release v1.2.2

This callback is called at the end of each epoch.

Parameters

• period (int) – Logging frequency (in epochs).

• logger_fn (callable) – The function used for logging. Must take 1 string as an argu-
ment. Defaults to the standard print function.

• msg_gen (callable) – A callable which generates the string to be logged. Must take 2
positional arguments: the RBM being trained and the current epoch. It must also be able to
take some keyword arguments.

• **kwargs – Keyword arguments which will be passed to msg_gen.

class qucumber.callbacks.EarlyStopping(period, tolerance, patience, evaluator_callback,
quantity_name, criterion=’relative’)

Stop training once the model stops improving.

There are three different stopping criteria available:

relative, which computes the relative change between the two model evaluation steps:⃒⃒⃒⃒
𝑀𝑡−𝑝 −𝑀𝑡

𝑀𝑡−𝑝

⃒⃒⃒⃒
< 𝜖

absolute computes the absolute change:

|𝑀𝑡−𝑝 −𝑀𝑡| < 𝜖

variance computes the absolute change, but scales the change by the standard deviation of the quantity of
interest, such that the tolerance, epsilon can now be interpreted as the “number of standard deviations”:⃒⃒⃒⃒

𝑀𝑡−𝑝 −𝑀𝑡

𝜎𝑡−𝑝

⃒⃒⃒⃒
< 𝜖

where 𝑀𝑡 is the metric value at the current evaluation (time 𝑡), 𝑝 is the “patience” parameter, 𝜎𝑡 is the standard
deviation of the metric, and 𝜖 is the tolerance.

This callback is called at the end of each epoch.

Parameters

• period (int) – Frequency with which the callback checks whether training has converged
(in epochs).

• tolerance (float) – The maximum relative change required to consider training as
having converged.

• patience (int) – How many intervals to wait before claiming the training has converged.

• evaluator_callback (MetricEvaluator or ObservableEvaluator) – An
instance of MetricEvaluator or ObservableEvaluator which computes the met-
ric that we want to check for convergence.

• quantity_name (str) – The name of the metric/observable stored in evalua-
tor_callback.

• criterion (str) – The stopping criterion to use. Must be one of the following: relative,
absolute, variance.

class qucumber.callbacks.VarianceBasedEarlyStopping(period, tolerance, patience, eval-
uator_callback, quantity_name,
variance_name=None)

Deprecated since version 1.2: Use EarlyStopping instead.

51

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

QuCumber Documentation, Release v1.2.2

Stop training once the model stops improving. This is a variation on the EarlyStopping class which takes
the variance of the metric into account.

The specific criterion for stopping is: ⃒⃒⃒⃒
𝑀𝑡−𝑝 −𝑀𝑡

𝜎𝑡−𝑝

⃒⃒⃒⃒
< 𝜅

where 𝑀𝑡 is the metric value at the current evaluation (time 𝑡), 𝑝 is the “patience” parameter, 𝜎𝑡 is the standard
deviation of the metric, and 𝜅 is the tolerance.

This callback is called at the end of each epoch.

Parameters

• period (int) – Frequency with which the callback checks whether training has converged
(in epochs).

• tolerance (float) – The maximum (standardized) change required to consider training
as having converged.

• patience (int) – How many intervals to wait before claiming the training has converged.

• evaluator_callback (MetricEvaluator or ObservableEvaluator) – An
instance of MetricEvaluator or ObservableEvaluator which computes the met-
ric/observable that we want to check for convergence.

• quantity_name (str) – The name of the metric/obserable stored in evaluator_callback.

• variance_name (str) – The name of the variance stored in evaluator_callback. Ig-
nored, exists for backward compatibility.

class qucumber.callbacks.MetricEvaluator(period, metrics, verbose=False, log=None,
**metric_kwargs)

Evaluate and hold on to the results of the given metric(s).

This callback is called at the end of each epoch.

Note: Since callbacks are given to fit as a list, they will be called in a deterministic order. It is therefore
recommended that instances of MetricEvaluator be among the first callbacks in the list passed to fit,
as one would often use it in conjunction with other callbacks like EarlyStopping which may depend on
MetricEvaluator having been called.

Parameters

• period (int) – Frequency with which the callback evaluates the given metric(s).

• metrics (dict(str, callable)) – A dictionary of callables where the keys are
the names of the metrics and the callables take the WaveFunction being trained as their
positional argument, along with some keyword arguments. The metrics are evaluated and
put into an internal dictionary structure resembling the structure of metrics.

• verbose (bool) – Whether to print metrics to stdout.

• log (str) – A filepath to log metric values to in CSV format.

• **metric_kwargs – Keyword arguments to be passed to metrics.

__getattr__(metric)
Return an array of all recorded values of the given metric.

Parameters metric (str) – The metric to retrieve.

52 Chapter 10. Callbacks

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

QuCumber Documentation, Release v1.2.2

Returns The past values of the metric.

Return type np.array

__getitem__(metric)
Alias for __getattr__ to enable subscripting.

__len__()
Return the number of timesteps that metrics have been evaluated for.

Return type int

clear_history()
Delete all metric values the instance is currently storing.

property epochs
Return a list of all epochs that have been recorded.

Return type np.array

get_value(name, index=None)
Retrieve the value of the desired metric from the given timestep.

Parameters

• name (str) – The name of the metric to retrieve.

• index (int or None) – The index/timestep from which to retrieve the metric. Nega-
tive indices are supported. If None, will just get the most recent value.

property names
The names of the tracked metrics.

Return type list[str]

class qucumber.callbacks.ObservableEvaluator(period, observables, verbose=False,
log=None, **sampling_kwargs)

Evaluate and hold on to the results of the given observable(s).

This callback is called at the end of each epoch.

Note: Since callback are given to fit as a list, they will be called in a deterministic order. It is therefore
recommended that instances of ObservableEvaluator be among the first callbacks in the list passed to
fit, as one would often use it in conjunction with other callbacks like EarlyStopping which may depend
on ObservableEvaluator having been called.

Parameters

• period (int) – Frequency with which the callback evaluates the given observables(s).

• observables (list(qucumber.observables.ObservableBase)) – A list of
Observables. Observable statistics are evaluated by sampling the WaveFunction. Note that
observables that have the same name will conflict, and precedence will be given to the one
which appears later in the list.

• verbose (bool) – Whether to print metrics to stdout.

• log (str) – A filepath to log metric values to in CSV format.

• **sampling_kwargs – Keyword arguments to be passed to Observable.statistics. Ex.
num_samples, num_chains, burn_in, steps.

53

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

QuCumber Documentation, Release v1.2.2

__getattr__(observable)
Return an ObservableStatistics containing recorded statistics of the given observable.

Parameters observable (str) – The observable to retrieve.

Returns The past values of the observable.

Return type ObservableStatistics

__getitem__(observable)
Alias for __getattr__ to enable subscripting.

__len__()
Return the number of timesteps that observables have been evaluated for.

Return type int

clear_history()
Delete all statistics the instance is currently storing.

property epochs
Return a list of all epochs that have been recorded.

Return type np.array

get_value(name, index=None)
Retrieve the statistics of the desired observable from the given timestep.

Parameters

• name (str) – The name of the observable to retrieve.

• index (int or None) – The index/timestep from which to retrieve the observable.
Negative indices are supported. If None, will just get the most recent value.

Return type dict(str, float)

property names
The names of the tracked observables.

Return type list[str]

class qucumber.callbacks.LivePlotting(period, evaluator_callback, quantity_name, er-
ror_name=None, total_epochs=None, smooth=True)

Plots metrics/observables.

This callback is called at the end of each epoch.

Parameters

• period (int) – Frequency with which the callback updates the plots (in epochs).

• evaluator_callback (MetricEvaluator or ObservableEvaluator) – An
instance of MetricEvaluator or ObservableEvaluator which computes the met-
ric/observable that we want to plot.

• quantity_name (str) – The name of the metric/observable stored in evalua-
tor_callback.

• error_name (str) – The name of the error stored in evaluator_callback.

class qucumber.callbacks.Timer(verbose=True)
Callback which records the training time.

This callback is always called at the start and end of training. It will run at the end of an epoch or batch if the
given model’s stop_training property is set to True.

54 Chapter 10. Callbacks

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

QuCumber Documentation, Release v1.2.2

Parameters verbose (bool) – Whether to print the elapsed time at the end of training.

55

https://docs.python.org/3/library/functions.html#bool

QuCumber Documentation, Release v1.2.2

56 Chapter 10. Callbacks

CHAPTER

ELEVEN

OBSERVABLES

11.1 Pauli Operators

class qucumber.observables.SigmaZ(absolute=False)
Bases: qucumber.observables.ObservableBase

The 𝜎𝑧 observable.

Computes the magnetization in the Z direction of a spin chain.

Parameters absolute (bool) – Specifies whether to estimate the absolute magnetization.

apply(nn_state, samples)
Computes the magnetization along Z of each sample given a batch of samples.

Assumes that the computational basis that the WaveFunction was trained on was the Z basis.

Parameters

• nn_state (qucumber.nn_states.WaveFunctionBase) – The WaveFunction
that drew the samples.

• samples (torch.Tensor) – A batch of samples to calculate the observable on. Must
be using the 𝜎𝑖 = 0, 1 convention.

property name
The name of the Observable.

sample(nn_state, k, num_samples=1, initial_state=None, overwrite=False)
Draws samples of the observable using the given WaveFunction.

Parameters

• nn_state (qucumber.nn_states.WaveFunctionBase) – The WaveFunction
to draw samples from.

• k (int) – The number of Gibbs Steps to perform before drawing a sample.

• num_samples (int) – The number of samples to draw.

• initial_state (torch.Tensor) – The initial state of the Markov Chain. If given,
num_samples will be ignored.

• overwrite (bool) – Whether to overwrite the initial_state tensor, if provided, with the
updated state of the Markov chain.

Returns The samples drawn through this observable.

Return type torch.Tensor

57

https://docs.python.org/3/library/functions.html#bool
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/functions.html#bool
https://pytorch.org/docs/stable/tensors.html#torch.Tensor

QuCumber Documentation, Release v1.2.2

statistics(nn_state, num_samples, num_chains=0, burn_in=1000, steps=1)
Estimates the expected value, variance, and the standard error of the observable over the distribution de-
fined by the WaveFunction.

Parameters

• nn_state (qucumber.nn_states.WaveFunctionBase) – The WaveFunction
to draw samples from.

• num_samples (int) – The number of samples to draw. The actual number of samples
drawn may be slightly higher if num_samples % num_chains != 0.

• num_chains (int) – The number of Markov chains to run in parallel; if 0 or greater
than num_samples, will use a number of chains equal to num_samples. This is not rec-
ommended in the case where a num_samples is large, as this may use up all the available
memory.

• burn_in (int) – The number of Gibbs Steps to perform before recording any samples.

• steps (int) – The number of Gibbs Steps to take between each sample.

Returns A dictionary containing the (estimated) expected value (key: “mean”), variance (key:
“variance”), and standard error (key: “std_error”) of the observable.

Return type dict(str, float)

statistics_from_samples(nn_state, samples)
Estimates the expected value, variance, and the standard error of the observable using the given samples.

Parameters

• nn_state (qucumber.nn_states.WaveFunctionBase) – The WaveFunction
that drew the samples.

• samples (torch.Tensor) – A batch of sample states to calculate the observable on.

Returns A dictionary containing the (estimated) expected value (key: “mean”), variance (key:
“variance”), and standard error (key: “std_error”) of the observable.

Return type dict(str, float)

property symbol
The algebraic symbol representing the Observable.

class qucumber.observables.SigmaX(absolute=False)
Bases: qucumber.observables.ObservableBase

The 𝜎𝑥 observable

Computes the magnetization in the X direction of a spin chain.

Parameters absolute (bool) – Specifies whether to estimate the absolute magnetization.

apply(nn_state, samples)
Computes the magnetization along X of each sample in the given batch of samples.

Assumes that the computational basis that the WaveFunction was trained on was the Z basis.

Parameters

• nn_state (qucumber.nn_states.WaveFunctionBase) – The WaveFunction
that drew the samples.

• samples (torch.Tensor) – A batch of samples to calculate the observable on. Must
be using the 𝜎𝑖 = 0, 1 convention.

58 Chapter 11. Observables

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://pytorch.org/docs/stable/tensors.html#torch.Tensor

QuCumber Documentation, Release v1.2.2

property name
The name of the Observable.

sample(nn_state, k, num_samples=1, initial_state=None, overwrite=False)
Draws samples of the observable using the given WaveFunction.

Parameters

• nn_state (qucumber.nn_states.WaveFunctionBase) – The WaveFunction
to draw samples from.

• k (int) – The number of Gibbs Steps to perform before drawing a sample.

• num_samples (int) – The number of samples to draw.

• initial_state (torch.Tensor) – The initial state of the Markov Chain. If given,
num_samples will be ignored.

• overwrite (bool) – Whether to overwrite the initial_state tensor, if provided, with the
updated state of the Markov chain.

Returns The samples drawn through this observable.

Return type torch.Tensor

statistics(nn_state, num_samples, num_chains=0, burn_in=1000, steps=1)
Estimates the expected value, variance, and the standard error of the observable over the distribution de-
fined by the WaveFunction.

Parameters

• nn_state (qucumber.nn_states.WaveFunctionBase) – The WaveFunction
to draw samples from.

• num_samples (int) – The number of samples to draw. The actual number of samples
drawn may be slightly higher if num_samples % num_chains != 0.

• num_chains (int) – The number of Markov chains to run in parallel; if 0 or greater
than num_samples, will use a number of chains equal to num_samples. This is not rec-
ommended in the case where a num_samples is large, as this may use up all the available
memory.

• burn_in (int) – The number of Gibbs Steps to perform before recording any samples.

• steps (int) – The number of Gibbs Steps to take between each sample.

Returns A dictionary containing the (estimated) expected value (key: “mean”), variance (key:
“variance”), and standard error (key: “std_error”) of the observable.

Return type dict(str, float)

statistics_from_samples(nn_state, samples)
Estimates the expected value, variance, and the standard error of the observable using the given samples.

Parameters

• nn_state (qucumber.nn_states.WaveFunctionBase) – The WaveFunction
that drew the samples.

• samples (torch.Tensor) – A batch of sample states to calculate the observable on.

Returns A dictionary containing the (estimated) expected value (key: “mean”), variance (key:
“variance”), and standard error (key: “std_error”) of the observable.

Return type dict(str, float)

11.1. Pauli Operators 59

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/functions.html#bool
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float

QuCumber Documentation, Release v1.2.2

property symbol
The algebraic symbol representing the Observable.

class qucumber.observables.SigmaY(absolute=False)
Bases: qucumber.observables.ObservableBase

The 𝜎𝑦 observable

Computes the magnetization in the Y direction of a spin chain.

Parameters absolute (bool) – Specifies whether to estimate the absolute magnetization.

apply(nn_state, samples)
Computes the magnetization along Y of each sample in the given batch of samples.

Assumes that the computational basis that the WaveFunction was trained on was the Z basis.

Parameters

• nn_state (qucumber.nn_states.WaveFunctionBase) – The WaveFunction
that drew the samples.

• samples (torch.Tensor) – A batch of samples to calculate the observable on. Must
be using the 𝜎𝑖 = 0, 1 convention.

property name
The name of the Observable.

sample(nn_state, k, num_samples=1, initial_state=None, overwrite=False)
Draws samples of the observable using the given WaveFunction.

Parameters

• nn_state (qucumber.nn_states.WaveFunctionBase) – The WaveFunction
to draw samples from.

• k (int) – The number of Gibbs Steps to perform before drawing a sample.

• num_samples (int) – The number of samples to draw.

• initial_state (torch.Tensor) – The initial state of the Markov Chain. If given,
num_samples will be ignored.

• overwrite (bool) – Whether to overwrite the initial_state tensor, if provided, with the
updated state of the Markov chain.

Returns The samples drawn through this observable.

Return type torch.Tensor

statistics(nn_state, num_samples, num_chains=0, burn_in=1000, steps=1)
Estimates the expected value, variance, and the standard error of the observable over the distribution de-
fined by the WaveFunction.

Parameters

• nn_state (qucumber.nn_states.WaveFunctionBase) – The WaveFunction
to draw samples from.

• num_samples (int) – The number of samples to draw. The actual number of samples
drawn may be slightly higher if num_samples % num_chains != 0.

• num_chains (int) – The number of Markov chains to run in parallel; if 0 or greater
than num_samples, will use a number of chains equal to num_samples. This is not rec-
ommended in the case where a num_samples is large, as this may use up all the available
memory.

60 Chapter 11. Observables

https://docs.python.org/3/library/functions.html#bool
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/functions.html#bool
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

QuCumber Documentation, Release v1.2.2

• burn_in (int) – The number of Gibbs Steps to perform before recording any samples.

• steps (int) – The number of Gibbs Steps to take between each sample.

Returns A dictionary containing the (estimated) expected value (key: “mean”), variance (key:
“variance”), and standard error (key: “std_error”) of the observable.

Return type dict(str, float)

statistics_from_samples(nn_state, samples)
Estimates the expected value, variance, and the standard error of the observable using the given samples.

Parameters

• nn_state (qucumber.nn_states.WaveFunctionBase) – The WaveFunction
that drew the samples.

• samples (torch.Tensor) – A batch of sample states to calculate the observable on.

Returns A dictionary containing the (estimated) expected value (key: “mean”), variance (key:
“variance”), and standard error (key: “std_error”) of the observable.

Return type dict(str, float)

property symbol
The algebraic symbol representing the Observable.

11.2 Neighbour Interactions

class qucumber.observables.NeighbourInteraction(periodic_bcs=False, c=1)
Bases: qucumber.observables.ObservableBase

The 𝜎𝑧
𝑖 𝜎

𝑧
𝑖+𝑐 observable

Computes the c-th nearest neighbour interaction for a spin chain with either open or periodic boundary condi-
tions.

Parameters

• periodic_bcs (bool) – Specifies whether the system has periodic boundary conditions.

• c (int) – Interaction distance.

apply(nn_state, samples)
Computes the energy of this neighbour interaction for each sample given a batch of samples.

Parameters

• nn_state (qucumber.nn_states.WaveFunctionBase) – The WaveFunction
that drew the samples.

• samples (torch.Tensor) – A batch of samples to calculate the observable on. Must
be using the 𝜎𝑖 = 0, 1 convention.

property name
The name of the Observable.

sample(nn_state, k, num_samples=1, initial_state=None, overwrite=False)
Draws samples of the observable using the given WaveFunction.

Parameters

• nn_state (qucumber.nn_states.WaveFunctionBase) – The WaveFunction
to draw samples from.

11.2. Neighbour Interactions 61

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://pytorch.org/docs/stable/tensors.html#torch.Tensor

QuCumber Documentation, Release v1.2.2

• k (int) – The number of Gibbs Steps to perform before drawing a sample.

• num_samples (int) – The number of samples to draw.

• initial_state (torch.Tensor) – The initial state of the Markov Chain. If given,
num_samples will be ignored.

• overwrite (bool) – Whether to overwrite the initial_state tensor, if provided, with the
updated state of the Markov chain.

Returns The samples drawn through this observable.

Return type torch.Tensor

statistics(nn_state, num_samples, num_chains=0, burn_in=1000, steps=1)
Estimates the expected value, variance, and the standard error of the observable over the distribution de-
fined by the WaveFunction.

Parameters

• nn_state (qucumber.nn_states.WaveFunctionBase) – The WaveFunction
to draw samples from.

• num_samples (int) – The number of samples to draw. The actual number of samples
drawn may be slightly higher if num_samples % num_chains != 0.

• num_chains (int) – The number of Markov chains to run in parallel; if 0 or greater
than num_samples, will use a number of chains equal to num_samples. This is not rec-
ommended in the case where a num_samples is large, as this may use up all the available
memory.

• burn_in (int) – The number of Gibbs Steps to perform before recording any samples.

• steps (int) – The number of Gibbs Steps to take between each sample.

Returns A dictionary containing the (estimated) expected value (key: “mean”), variance (key:
“variance”), and standard error (key: “std_error”) of the observable.

Return type dict(str, float)

statistics_from_samples(nn_state, samples)
Estimates the expected value, variance, and the standard error of the observable using the given samples.

Parameters

• nn_state (qucumber.nn_states.WaveFunctionBase) – The WaveFunction
that drew the samples.

• samples (torch.Tensor) – A batch of sample states to calculate the observable on.

Returns A dictionary containing the (estimated) expected value (key: “mean”), variance (key:
“variance”), and standard error (key: “std_error”) of the observable.

Return type dict(str, float)

property symbol
The algebraic symbol representing the Observable.

62 Chapter 11. Observables

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/functions.html#bool
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float

QuCumber Documentation, Release v1.2.2

11.3 Abstract Observable

Note: This is an Abstract Base Class, it is not meant to be used directly. The following API reference is mostly for
developers.

class qucumber.observables.ObservableBase
Bases: abc.ABC

Base class for observables.

abstract apply(nn_state, samples)
Computes the value of the observable, row-wise, on a batch of samples.

If we think of the samples given as a set of projective measurements in a given computational basis, this
method must return the expectation of the operator with respect to each basis state in samples. It must
not perform any averaging for statistical purposes, as the proper analysis is delegated to the specialized
statistics and statistics_from_samples methods.

Must be implemented by any subclasses.

Parameters

• nn_state (qucumber.nn_states.WaveFunctionBase) – The WaveFunction
that drew the samples.

• samples (torch.Tensor) – A batch of sample states to calculate the observable on.

Returns The value of the observable of each given basis state.

Return type torch.Tensor

property name
The name of the Observable.

sample(nn_state, k, num_samples=1, initial_state=None, overwrite=False)
Draws samples of the observable using the given WaveFunction.

Parameters

• nn_state (qucumber.nn_states.WaveFunctionBase) – The WaveFunction
to draw samples from.

• k (int) – The number of Gibbs Steps to perform before drawing a sample.

• num_samples (int) – The number of samples to draw.

• initial_state (torch.Tensor) – The initial state of the Markov Chain. If given,
num_samples will be ignored.

• overwrite (bool) – Whether to overwrite the initial_state tensor, if provided, with the
updated state of the Markov chain.

Returns The samples drawn through this observable.

Return type torch.Tensor

statistics(nn_state, num_samples, num_chains=0, burn_in=1000, steps=1)
Estimates the expected value, variance, and the standard error of the observable over the distribution de-
fined by the WaveFunction.

Parameters

11.3. Abstract Observable 63

https://docs.python.org/3/library/abc.html#abc.ABC
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/functions.html#bool
https://pytorch.org/docs/stable/tensors.html#torch.Tensor

QuCumber Documentation, Release v1.2.2

• nn_state (qucumber.nn_states.WaveFunctionBase) – The WaveFunction
to draw samples from.

• num_samples (int) – The number of samples to draw. The actual number of samples
drawn may be slightly higher if num_samples % num_chains != 0.

• num_chains (int) – The number of Markov chains to run in parallel; if 0 or greater
than num_samples, will use a number of chains equal to num_samples. This is not rec-
ommended in the case where a num_samples is large, as this may use up all the available
memory.

• burn_in (int) – The number of Gibbs Steps to perform before recording any samples.

• steps (int) – The number of Gibbs Steps to take between each sample.

Returns A dictionary containing the (estimated) expected value (key: “mean”), variance (key:
“variance”), and standard error (key: “std_error”) of the observable.

Return type dict(str, float)

statistics_from_samples(nn_state, samples)
Estimates the expected value, variance, and the standard error of the observable using the given samples.

Parameters

• nn_state (qucumber.nn_states.WaveFunctionBase) – The WaveFunction
that drew the samples.

• samples (torch.Tensor) – A batch of sample states to calculate the observable on.

Returns A dictionary containing the (estimated) expected value (key: “mean”), variance (key:
“variance”), and standard error (key: “std_error”) of the observable.

Return type dict(str, float)

property symbol
The algebraic symbol representing the Observable.

64 Chapter 11. Observables

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float

CHAPTER

TWELVE

COMPLEX ALGEBRA

qucumber.utils.cplx.absolute_value(x)
Computes the complex absolute value elementwise.

Parameters x (torch.Tensor) – A complex tensor.

Returns A real tensor.

Return type torch.Tensor

qucumber.utils.cplx.conjugate(x)
A function that takes the conjugate transpose of the argument.

Parameters x (torch.Tensor) – A complex vector or matrix.

Returns The conjugate of x.

Return type torch.Tensor

qucumber.utils.cplx.elementwise_division(x, y)
Elementwise division of x by y.

Parameters

• x (torch.Tensor) – A complex tensor.

• y (torch.Tensor) – A complex tensor.

Return type torch.Tensor

qucumber.utils.cplx.elementwise_mult(x, y)
Alias for scalar_mult().

qucumber.utils.cplx.imag(x)
Returns the imaginary part of a complex tensor.

Parameters x (torch.Tensor) – The complex tensor

Returns The imaginary part of x; will have one less dimension than x.

Return type torch.Tensor

qucumber.utils.cplx.inner_prod(x, y)
A function that returns the inner product of two complex vectors, x and y (<x|y>).

Parameters

• x (torch.Tensor) – A complex vector.

• y (torch.Tensor) – A complex vector.

Raises ValueError – If x and y are not complex vectors with their first dimensions being 2, then
the function will not execute.

65

https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/exceptions.html#ValueError

QuCumber Documentation, Release v1.2.2

Returns The inner product, ⟨𝑥|𝑦⟩.

Return type torch.Tensor

qucumber.utils.cplx.kronecker_prod(x, y)
A function that returns the tensor / kronecker product of 2 complex tensors, x and y.

Parameters

• x (torch.Tensor) – A complex matrix.

• y (torch.Tensor) – A complex matrix.

Raises ValueError – If x and y do not have 3 dimensions or their first dimension is not 2, the
function cannot execute.

Returns The tensorproduct of x and y, 𝑥⊗ 𝑦.

Return type torch.Tensor

qucumber.utils.cplx.make_complex(x, y=None)
A function that combines the real (x) and imaginary (y) parts of a vector or a matrix.

Note: x and y must have the same shape. Also, this will not work for rank zero tensors.

Parameters

• x (torch.Tensor) – The real part

• y (torch.Tensor) – The imaginary part. Can be None, in which case, the resulting
complex tensor will have imaginary part equal to zero.

Returns The tensor [x,y] = x + yi.

Return type torch.Tensor

qucumber.utils.cplx.matmul(x, y)
A function that computes complex matrix-matrix and matrix-vector products.

Note: If one wishes to do matrix-vector products, the vector must be the second argument (y).

Parameters

• x (torch.Tensor) – A complex matrix.

• y (torch.Tensor) – A complex vector or matrix.

Returns The product between x and y.

Return type torch.Tensor

qucumber.utils.cplx.norm(x)
A function that returns the norm of the argument.

Parameters x (torch.Tensor) – A complex scalar.

Returns |𝑥|.

Return type torch.Tensor

66 Chapter 12. Complex Algebra

https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/exceptions.html#ValueError
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor

QuCumber Documentation, Release v1.2.2

qucumber.utils.cplx.norm_sqr(x)
A function that returns the squared norm of the argument.

Parameters x (torch.Tensor) – A complex scalar.

Returns |𝑥|2.

Return type torch.Tensor

qucumber.utils.cplx.outer_prod(x, y)
A function that returns the outer product of two complex vectors, x and y.

Parameters

• x (torch.Tensor) – A complex vector.

• y (torch.Tensor) – A complex vector.

Raises ValueError – If x and y are not complex vectors with their first dimensions being 2, then
an error will be raised.

Returns The outer product between x and y, |𝑥⟩⟨𝑦|.

Return type torch.Tensor

qucumber.utils.cplx.real(x)
Returns the real part of a complex tensor.

Parameters x (torch.Tensor) – The complex tensor

Returns The real part of x; will have one less dimension than x.

Return type torch.Tensor

qucumber.utils.cplx.scalar_divide(x, y)
A function that computes the division of x by y.

Parameters

• x (torch.Tensor) – The numerator (a complex scalar, vector or matrix).

• y (torch.Tensor) – The denominator (a complex scalar).

Returns x / y

Return type torch.Tensor

qucumber.utils.cplx.scalar_mult(x, y, out=None)
A function that computes the product between complex matrices and scalars, complex vectors and scalars or
two complex scalars.

Parameters

• x (torch.Tensor) – A complex scalar, vector or matrix.

• y (torch.Tensor) – A complex scalar, vector or matrix.

Returns The product between x and y. Either overwrites out, or returns a new tensor.

Return type torch.Tensor

67

https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/exceptions.html#ValueError
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor

QuCumber Documentation, Release v1.2.2

68 Chapter 12. Complex Algebra

CHAPTER

THIRTEEN

DATA HANDLING

qucumber.utils.data.extract_refbasis_samples(train_samples, train_bases)
Extract the reference basis samples from the data.

Parameters

• train_samples (torch.Tensor) – The training samples.

• train_bases (np.array(dtype=str)) – The bases of the training samples.

Returns The samples in the data that are only in the reference basis.

Return type torch.Tensor

qucumber.utils.data.load_data(tr_samples_path, tr_psi_path=None, tr_bases_path=None,
bases_path=None)

Load the data required for training.

Parameters

• tr_samples_path (str) – The path to the training data.

• tr_psi_path (str) – The path to the target/true wavefunction.

• tr_bases_path (str) – The path to the basis data.

• bases_path (str) – The path to a file containing all possible bases used in the
tr_bases_path file.

Returns A list of all input parameters.

Return type list

69

https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list

QuCumber Documentation, Release v1.2.2

70 Chapter 13. Data Handling

CHAPTER

FOURTEEN

INDICES AND TABLES

• genindex

• search

71

QuCumber Documentation, Release v1.2.2

72 Chapter 14. Indices and tables

PYTHON MODULE INDEX

q
qucumber.utils.cplx, 65
qucumber.utils.data, 69

73

QuCumber Documentation, Release v1.2.2

74 Python Module Index

INDEX

Symbols
__getattr__() (qucum-

ber.callbacks.MetricEvaluator method),
52

__getattr__() (qucum-
ber.callbacks.ObservableEvaluator method),
53

__getitem__() (qucum-
ber.callbacks.MetricEvaluator method),
53

__getitem__() (qucum-
ber.callbacks.ObservableEvaluator method),
54

__len__() (qucumber.callbacks.MetricEvaluator
method), 53

__len__() (qucumber.callbacks.ObservableEvaluator
method), 54

A
absolute_value() (in module qucumber.utils.cplx),

65
amplitude() (qucum-

ber.nn_states.ComplexWaveFunction method),
41

amplitude() (qucum-
ber.nn_states.PositiveWaveFunction method),
37

amplitude() (qucumber.nn_states.WaveFunctionBase
method), 45

apply() (qucumber.observables.NeighbourInteraction
method), 61

apply() (qucumber.observables.ObservableBase
method), 63

apply() (qucumber.observables.SigmaX method), 58
apply() (qucumber.observables.SigmaY method), 60
apply() (qucumber.observables.SigmaZ method), 57
autoload() (qucum-

ber.nn_states.ComplexWaveFunction static
method), 41

autoload() (qucum-
ber.nn_states.PositiveWaveFunction static
method), 37

autoload() (qucumber.nn_states.WaveFunctionBase
static method), 45

B
BinaryRBM (class in qucumber.rbm), 35

C
CallbackBase (class in qucumber.callbacks), 49
clear_history() (qucum-

ber.callbacks.MetricEvaluator method),
53

clear_history() (qucum-
ber.callbacks.ObservableEvaluator method),
54

ComplexWaveFunction (class in qucum-
ber.nn_states), 41

compute_batch_gradients() (qucum-
ber.nn_states.ComplexWaveFunction method),
41

compute_batch_gradients() (qucum-
ber.nn_states.PositiveWaveFunction method),
37

compute_batch_gradients() (qucum-
ber.nn_states.WaveFunctionBase method),
45

compute_normalization() (qucum-
ber.nn_states.ComplexWaveFunction method),
42

compute_normalization() (qucum-
ber.nn_states.PositiveWaveFunction method),
38

compute_normalization() (qucum-
ber.nn_states.WaveFunctionBase method),
45

conjugate() (in module qucumber.utils.cplx), 65

D
device() (qucumber.nn_states.ComplexWaveFunction

property), 42
device() (qucumber.nn_states.PositiveWaveFunction

property), 38

75

QuCumber Documentation, Release v1.2.2

device() (qucumber.nn_states.WaveFunctionBase
property), 46

E
EarlyStopping (class in qucumber.callbacks), 51
effective_energy() (qucumber.rbm.BinaryRBM

method), 35
effective_energy_gradient() (qucum-

ber.rbm.BinaryRBM method), 35
elementwise_division() (in module qucum-

ber.utils.cplx), 65
elementwise_mult() (in module qucum-

ber.utils.cplx), 65
epochs() (qucumber.callbacks.MetricEvaluator prop-

erty), 53
epochs() (qucumber.callbacks.ObservableEvaluator

property), 54
extract_refbasis_samples() (in module qu-

cumber.utils.data), 69

F
fit() (qucumber.nn_states.ComplexWaveFunction

method), 42
fit() (qucumber.nn_states.PositiveWaveFunction

method), 38
fit() (qucumber.nn_states.WaveFunctionBase

method), 46

G
generate_hilbert_space() (qucum-

ber.nn_states.ComplexWaveFunction method),
42

generate_hilbert_space() (qucum-
ber.nn_states.PositiveWaveFunction method),
38

generate_hilbert_space() (qucum-
ber.nn_states.WaveFunctionBase method),
46

get_value() (qucumber.callbacks.MetricEvaluator
method), 53

get_value() (qucum-
ber.callbacks.ObservableEvaluator method),
54

gibbs_steps() (qucumber.rbm.BinaryRBM method),
35

gradient() (qucum-
ber.nn_states.ComplexWaveFunction method),
43

gradient() (qucum-
ber.nn_states.PositiveWaveFunction method),
39

gradient() (qucumber.nn_states.WaveFunctionBase
method), 46

I
imag() (in module qucumber.utils.cplx), 65
initialize_parameters() (qucum-

ber.rbm.BinaryRBM method), 35
inner_prod() (in module qucumber.utils.cplx), 65

K
kronecker_prod() (in module qucumber.utils.cplx),

66

L
LambdaCallback (class in qucumber.callbacks), 50
LivePlotting (class in qucumber.callbacks), 54
load() (qucumber.nn_states.ComplexWaveFunction

method), 43
load() (qucumber.nn_states.PositiveWaveFunction

method), 39
load() (qucumber.nn_states.WaveFunctionBase

method), 46
load_data() (in module qucumber.utils.data), 69
Logger (class in qucumber.callbacks), 50

M
make_complex() (in module qucumber.utils.cplx), 66
matmul() (in module qucumber.utils.cplx), 66
max_size() (qucum-

ber.nn_states.ComplexWaveFunction property),
43

max_size() (qucum-
ber.nn_states.PositiveWaveFunction property),
39

max_size() (qucumber.nn_states.WaveFunctionBase
property), 47

MetricEvaluator (class in qucumber.callbacks), 52
ModelSaver (class in qucumber.callbacks), 50

N
name() (qucumber.observables.NeighbourInteraction

property), 61
name() (qucumber.observables.ObservableBase prop-

erty), 63
name() (qucumber.observables.SigmaX property), 58
name() (qucumber.observables.SigmaY property), 60
name() (qucumber.observables.SigmaZ property), 57
names() (qucumber.callbacks.MetricEvaluator prop-

erty), 53
names() (qucumber.callbacks.ObservableEvaluator

property), 54
NeighbourInteraction (class in qucum-

ber.observables), 61
networks() (qucum-

ber.nn_states.ComplexWaveFunction property),
43

76 Index

QuCumber Documentation, Release v1.2.2

networks() (qucum-
ber.nn_states.PositiveWaveFunction property),
39

networks() (qucumber.nn_states.WaveFunctionBase
property), 47

norm() (in module qucumber.utils.cplx), 66
norm_sqr() (in module qucumber.utils.cplx), 66

O
ObservableBase (class in qucumber.observables), 63
ObservableEvaluator (class in qucum-

ber.callbacks), 53
on_batch_end() (qucumber.callbacks.CallbackBase

method), 49
on_batch_start() (qucum-

ber.callbacks.CallbackBase method), 49
on_epoch_end() (qucumber.callbacks.CallbackBase

method), 49
on_epoch_start() (qucum-

ber.callbacks.CallbackBase method), 49
on_train_end() (qucumber.callbacks.CallbackBase

method), 49
on_train_start() (qucum-

ber.callbacks.CallbackBase method), 50
outer_prod() (in module qucumber.utils.cplx), 67

P
partition() (qucumber.rbm.BinaryRBM method), 35
phase() (qucumber.nn_states.ComplexWaveFunction

method), 43
phase() (qucumber.nn_states.PositiveWaveFunction

method), 39
phase() (qucumber.nn_states.WaveFunctionBase

method), 47
PositiveWaveFunction (class in qucum-

ber.nn_states), 37
prob_h_given_v() (qucumber.rbm.BinaryRBM

method), 36
prob_v_given_h() (qucumber.rbm.BinaryRBM

method), 36
probability() (qucum-

ber.nn_states.ComplexWaveFunction method),
43

probability() (qucum-
ber.nn_states.PositiveWaveFunction method),
39

probability() (qucum-
ber.nn_states.WaveFunctionBase method),
47

psi() (qucumber.nn_states.ComplexWaveFunction
method), 43

psi() (qucumber.nn_states.PositiveWaveFunction
method), 39

psi() (qucumber.nn_states.WaveFunctionBase
method), 47

Q
qucumber.utils.cplx (module), 65
qucumber.utils.data (module), 69

R
rbm_am() (qucumber.nn_states.ComplexWaveFunction

property), 44
rbm_am() (qucumber.nn_states.PositiveWaveFunction

property), 40
rbm_am() (qucumber.nn_states.WaveFunctionBase

property), 47
rbm_ph() (qucumber.nn_states.ComplexWaveFunction

property), 44
real() (in module qucumber.utils.cplx), 67
reinitialize_parameters() (qucum-

ber.nn_states.ComplexWaveFunction method),
44

reinitialize_parameters() (qucum-
ber.nn_states.PositiveWaveFunction method),
40

reinitialize_parameters() (qucum-
ber.nn_states.WaveFunctionBase method),
47

S
sample() (qucumber.nn_states.ComplexWaveFunction

method), 44
sample() (qucumber.nn_states.PositiveWaveFunction

method), 40
sample() (qucumber.nn_states.WaveFunctionBase

method), 47
sample() (qucumber.observables.NeighbourInteraction

method), 61
sample() (qucumber.observables.ObservableBase

method), 63
sample() (qucumber.observables.SigmaX method), 59
sample() (qucumber.observables.SigmaY method), 60
sample() (qucumber.observables.SigmaZ method), 57
sample_h_given_v() (qucumber.rbm.BinaryRBM

method), 36
sample_v_given_h() (qucumber.rbm.BinaryRBM

method), 36
save() (qucumber.nn_states.ComplexWaveFunction

method), 44
save() (qucumber.nn_states.PositiveWaveFunction

method), 40
save() (qucumber.nn_states.WaveFunctionBase

method), 48
scalar_divide() (in module qucumber.utils.cplx),

67
scalar_mult() (in module qucumber.utils.cplx), 67

Index 77

QuCumber Documentation, Release v1.2.2

SigmaX (class in qucumber.observables), 58
SigmaY (class in qucumber.observables), 60
SigmaZ (class in qucumber.observables), 57
statistics() (qucum-

ber.observables.NeighbourInteraction method),
62

statistics() (qucum-
ber.observables.ObservableBase method),
63

statistics() (qucumber.observables.SigmaX
method), 59

statistics() (qucumber.observables.SigmaY
method), 60

statistics() (qucumber.observables.SigmaZ
method), 57

statistics_from_samples() (qucum-
ber.observables.NeighbourInteraction method),
62

statistics_from_samples() (qucum-
ber.observables.ObservableBase method),
64

statistics_from_samples() (qucum-
ber.observables.SigmaX method), 59

statistics_from_samples() (qucum-
ber.observables.SigmaY method), 61

statistics_from_samples() (qucum-
ber.observables.SigmaZ method), 58

stop_training() (qucum-
ber.nn_states.ComplexWaveFunction property),
44

stop_training() (qucum-
ber.nn_states.PositiveWaveFunction property),
40

stop_training() (qucum-
ber.nn_states.WaveFunctionBase property),
48

subspace_vector() (qucum-
ber.nn_states.ComplexWaveFunction method),
44

subspace_vector() (qucum-
ber.nn_states.PositiveWaveFunction method),
40

subspace_vector() (qucum-
ber.nn_states.WaveFunctionBase method),
48

symbol() (qucumber.observables.NeighbourInteraction
property), 62

symbol() (qucumber.observables.ObservableBase
property), 64

symbol() (qucumber.observables.SigmaX property), 59
symbol() (qucumber.observables.SigmaY property), 61
symbol() (qucumber.observables.SigmaZ property), 58

T
Timer (class in qucumber.callbacks), 54

V
VarianceBasedEarlyStopping (class in qucum-

ber.callbacks), 51

W
WaveFunctionBase (class in qucumber.nn_states), 45

78 Index

	Installation
	Github
	Windows
	Linux / macOS

	Theory
	Download the tutorials
	Reconstruction of a positive-real wavefunction
	Transverse-field Ising model
	Using QuCumber to reconstruct the wavefunction
	Imports
	Training

	Reconstruction of a complex wavefunction
	The wavefunction to be reconstructed
	Using qucumber to reconstruct the wavefunction
	Imports
	Training

	Sampling and calculating observables
	Generate new samples
	Magnetization

	Calculate an observable using the Observable module
	Magnetization (again)
	TFIM Energy
	Adding observables
	Renyi Entropy and the Swap operator
	Custom observable

	Estimating Statistics of Many Observables Simultaneously
	Template for your custom observable

	Training while monitoring observables
	RBM
	Quantum States
	Positive WaveFunction
	Complex WaveFunction
	Abstract WaveFunction

	Callbacks
	Observables
	Pauli Operators
	Neighbour Interactions
	Abstract Observable

	Complex Algebra
	Data Handling
	Indices and tables
	Python Module Index
	Index

