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CHAPTER

ONE

INSTALLATION

QuCumber only supports Python 3 (specifically, 3.6 and up), not Python 2. If you are using Python 2, please update!
You may also want to install PyTorch (https://pytorch.org/), if you have not already.

If you’re running a reasonably up-to-date Linux or macOS system, PyTorch should be installed automatically when you
install QuCumber with pip.

1.1 Windows

Windows 10 is recommended. PyTorch is required (following https://pytorch.org/get-started/locally/). One way for
getting PyTorch is having Anaconda installed first and using the 64-bit graphical installer (https://repo.anaconda.com/
archive/Anaconda3-2020.02-Windows-x86_64.exe).

Before you install Anaconda, make sure to have a LaTeX distribution installed, for example MiKTeX (https://miktex.
org/download), as Matplotlib libraries require LaTeX for nice visualization in Python.

After the Anaconda installation, follow specific instructions on https://pytorch.org/get-started/locally/ to get the correct
installation command for PyTorch, which is CUDA version dependent. For example, if your system does not have a
GPU card, you will need the CPU version:

conda install pytorch torchvision cpuonly -c pytorch

To install QuCumber on Anaconda, start the Anaconda prompt, or navigate to the directory (through command prompt)
where pip.exe is installed (usually C:\Python\Scripts\pip.exe) and then type:

pip.exe install qucumber

1.2 Linux / macOS

Open up a terminal, then type:

pip install qucumber

1
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1.3 GitHub

Navigate to the qucumber page on GitHub (https://github.com/PIQuIL/QuCumber) and clone the repository by typing:

git clone https://github.com/PIQuIL/QuCumber.git

Navigate to the main directory and type:

python setup.py install

2 Chapter 1. Installation
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CHAPTER

TWO

THEORY

For a basic introduction to Restricted Boltzmann Machines, click here.
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CHAPTER

THREE

DOWNLOAD THE TUTORIALS

Once you have installed QuCumber, we recommend going through our tutorial that is divided into two parts.

1. Training a wave function to reconstruct a positive-real wave function (i.e. no phase) from a transverse-field Ising
model (TFIM) and then generating new data.

2. Training an wave function to reconstruct a complex wave function (i.e. with a phase) from a simple two qubit
random state and then generating new data.

We have made interactive python notebooks that can be downloaded (along with the data required) here. Note that the
linked examples are from the most recent stable release (relative to the version of the docs you’re currently viewing),
and may not match the examples shown in the following pages. It is recommended that you refer to documentation for
the latest stable release: https://qucumber.readthedocs.io/en/stable/.

If you wish to simply view the static, non-interactive notebooks, continue to the next page of the documentation.

Alternatively, you can view interactive notebooks online at: , though they may be slow.
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CHAPTER

FOUR

RECONSTRUCTION OF A POSITIVE-REAL WAVEFUNCTION

This tutorial shows how to reconstruct a positive-real wavefunction via training a Restricted Boltzmann Machine
(RBM), the neural network behind QuCumber. The data used for training are 𝜎𝑧 measurements from a one-dimensional
transverse-field Ising model (TFIM) with 10 sites at its critical point.

4.1 Transverse-field Ising model

The example dataset, located in tfim1d_data.txt, comprises 10,000 𝜎𝑧 measurements from a one-dimensional
TFIM with 10 sites at its critical point. The Hamiltonian for the TFIM is given by

𝐻 = −𝐽
∑︁
𝑖

𝜎𝑧
𝑖 𝜎

𝑧
𝑖+1 − ℎ

∑︁
𝑖

𝜎𝑥
𝑖

where 𝜎𝑧
𝑖 is the conventional spin-1/2 Pauli operator on site 𝑖. At the critical point, 𝐽 = ℎ = 1. By convention, spins

are represented in binary notation with zero and one denoting the states spin-down and spin-up, respectively.

4.2 Using QuCumber to reconstruct the wavefunction

4.2.1 Imports

To begin the tutorial, first import the required Python packages.

[1]: import numpy as np
import matplotlib.pyplot as plt

from qucumber.nn_states import PositiveWaveFunction
from qucumber.callbacks import MetricEvaluator

import qucumber.utils.training_statistics as ts
import qucumber.utils.data as data
import qucumber

# set random seed on cpu but not gpu, since we won't use gpu for this tutorial
qucumber.set_random_seed(1234, cpu=True, gpu=False)

The Python class PositiveWaveFunction contains generic properties of a RBM meant to reconstruct a positive-real
wavefunction, the most notable one being the gradient function required for stochastic gradient descent.

To instantiate a PositiveWaveFunction object, one needs to specify the number of visible and hidden units in the
RBM. The number of visible units, num_visible, is given by the size of the physical system, i.e. the number of spins

7
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or qubits (10 in this case), while the number of hidden units, num_hidden, can be varied to change the expressiveness
of the neural network.

Note: The optimal num_hidden : num_visible ratio will depend on the system. For the TFIM, having this ratio be
equal to 1 leads to good results with reasonable computational effort.

4.2.2 Training

To evaluate the training in real time, we compute the fidelity between the true ground-state wavefunction of the system
and the wavefunction that QuCumber reconstructs, |⟨𝜓|𝜓𝑅𝐵𝑀 ⟩|2, along with the Kullback-Leibler (KL) divergence
(the RBM’s cost function). As will be shown below, any custom function can be used to evaluate the training.

First, the training data and the true wavefunction of this system must be loaded using the data utility.

[2]: psi_path = "tfim1d_psi.txt"
train_path = "tfim1d_data.txt"
train_data, true_psi = data.load_data(train_path, psi_path)

As previously mentioned, to instantiate a PositiveWaveFunction object, one needs to specify the number of visible
and hidden units in the RBM; we choose them to be equal.

[3]: nv = train_data.shape[-1]
nh = nv

nn_state = PositiveWaveFunction(num_visible=nv, num_hidden=nh, gpu=False)

If gpu=True (the default), QuCumber will attempt to run on a GPU if one is available (otherwise, QuCumber will
default to CPU). If one gpu=False, QuCumber will run on the CPU.

Now we specify the hyperparameters of the training process:

1. epochs: the total number of training cycles that will be performed (default = 100)

2. pbs (pos_batch_size): the number of data points used in the positive phase of the gradient (default = 100)

3. nbs (neg_batch_size): the number of data points used in the negative phase of the gradient (default = 100)

4. k: the number of contrastive divergence steps (default = 1)

5. lr: the learning rate (default = 0.001)

Note: For more information on the hyperparameters above, it is strongly encouraged that the user to read through
the brief, but thorough theory document on RBMs located in the QuCumber documentation. One does not have
to specify these hyperparameters, as their default values will be used without the user overwriting them. It is
recommended to keep with the default values until the user has a stronger grasp on what these hyperparam-
eters mean. The quality and the computational efficiency of the training will highly depend on the choice of
hyperparameters. As such, playing around with the hyperparameters is almost always necessary.

For the TFIM with 10 sites, the following hyperparameters give excellent results:

[4]: epochs = 500
pbs = 100
nbs = pbs
lr = 0.01
k = 10

For evaluating the training in real time, the MetricEvaluator is called every 100 epochs in order to calculate the
training evaluators. The MetricEvaluator requires the following arguments:

8 Chapter 4. Reconstruction of a positive-real wavefunction
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1. period: the frequency of the training evaluators being calculated (e.g. period=100 means that the
MetricEvaluator will do an evaluation every 100 epochs)

2. A dictionary of functions you would like to reference to evaluate the training (arguments required for these
functions are keyword arguments placed after the dictionary)

The following additional arguments are needed to calculate the fidelity and KL divergence in the
training_statistics utility:

• target_psi: the true wavefunction of the system

• space: the Hilbert space of the system

The training evaluators can be printed out via the verbose=True statement.

Although the fidelity and KL divergence are excellent training evaluators, they are not practical to calculate in most
cases; the user may not have access to the target wavefunction of the system, nor may generating the Hilbert space of
the system be computationally feasible. However, evaluating the training in real time is extremely convenient.

Any custom function that the user would like to use to evaluate the training can be given to the MetricEvaluator, thus
avoiding having to calculate fidelity and/or KL divergence. Any custom function given to MetricEvaluatormust take
the neural-network state (in this case, the PositiveWaveFunction object) and keyword arguments. As an example, we
define a custom function psi_coefficient, which is the fifth coefficient of the reconstructed wavefunction multiplied
by a parameter 𝐴.

[5]: def psi_coefficient(nn_state, space, A, **kwargs):
norm = nn_state.compute_normalization(space).sqrt_()
return A * nn_state.psi(space)[0][4] / norm

Now the Hilbert space of the system can be generated for the fidelity and KL divergence.

[6]: period = 10
space = nn_state.generate_hilbert_space()

Now the training can begin. The PositiveWaveFunction object has a property called fit which takes care of this.
MetricEvaluator must be passed to the fit function in a list (callbacks).

[7]: callbacks = [
MetricEvaluator(

period,
{"Fidelity": ts.fidelity, "KL": ts.KL, "A_rbm_5": psi_coefficient},
target=true_psi,
verbose=True,
space=space,
A=3.0,

)
]

nn_state.fit(
train_data,
epochs=epochs,
pos_batch_size=pbs,
neg_batch_size=nbs,
lr=lr,
k=k,
callbacks=callbacks,
time=True,

)

4.2. Using QuCumber to reconstruct the wavefunction 9
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Epoch: 10 Fidelity = 0.500444 KL = 1.434037 A_rbm_5 = 0.111008
Epoch: 20 Fidelity = 0.570243 KL = 1.098804 A_rbm_5 = 0.140842
Epoch: 30 Fidelity = 0.681689 KL = 0.712384 A_rbm_5 = 0.192823
Epoch: 40 Fidelity = 0.781095 KL = 0.457683 A_rbm_5 = 0.222722
Epoch: 50 Fidelity = 0.840074 KL = 0.326949 A_rbm_5 = 0.239039
Epoch: 60 Fidelity = 0.875057 KL = 0.252105 A_rbm_5 = 0.239344
Epoch: 70 Fidelity = 0.895826 KL = 0.211282 A_rbm_5 = 0.239159
Epoch: 80 Fidelity = 0.907819 KL = 0.190410 A_rbm_5 = 0.245369
Epoch: 90 Fidelity = 0.914834 KL = 0.177129 A_rbm_5 = 0.238663
Epoch: 100 Fidelity = 0.920255 KL = 0.167432 A_rbm_5 = 0.246280
Epoch: 110 Fidelity = 0.924585 KL = 0.158587 A_rbm_5 = 0.244731
Epoch: 120 Fidelity = 0.928158 KL = 0.150159 A_rbm_5 = 0.236318
Epoch: 130 Fidelity = 0.932489 KL = 0.140405 A_rbm_5 = 0.243707
Epoch: 140 Fidelity = 0.936930 KL = 0.130399 A_rbm_5 = 0.242923
Epoch: 150 Fidelity = 0.941502 KL = 0.120001 A_rbm_5 = 0.246340
Epoch: 160 Fidelity = 0.946511 KL = 0.108959 A_rbm_5 = 0.243519
Epoch: 170 Fidelity = 0.951172 KL = 0.098144 A_rbm_5 = 0.235464
Epoch: 180 Fidelity = 0.955645 KL = 0.088780 A_rbm_5 = 0.237005
Epoch: 190 Fidelity = 0.959723 KL = 0.080219 A_rbm_5 = 0.234366
Epoch: 200 Fidelity = 0.962512 KL = 0.074663 A_rbm_5 = 0.227764
Epoch: 210 Fidelity = 0.965615 KL = 0.068804 A_rbm_5 = 0.233611
Epoch: 220 Fidelity = 0.967394 KL = 0.065302 A_rbm_5 = 0.233936
Epoch: 230 Fidelity = 0.969286 KL = 0.061641 A_rbm_5 = 0.230911
Epoch: 240 Fidelity = 0.970506 KL = 0.059283 A_rbm_5 = 0.225389
Epoch: 250 Fidelity = 0.971461 KL = 0.057742 A_rbm_5 = 0.233186
Epoch: 260 Fidelity = 0.973525 KL = 0.053430 A_rbm_5 = 0.225180
Epoch: 270 Fidelity = 0.975005 KL = 0.050646 A_rbm_5 = 0.228983
Epoch: 280 Fidelity = 0.976041 KL = 0.048451 A_rbm_5 = 0.231805
Epoch: 290 Fidelity = 0.977197 KL = 0.046058 A_rbm_5 = 0.232667
Epoch: 300 Fidelity = 0.977386 KL = 0.045652 A_rbm_5 = 0.239462
Epoch: 310 Fidelity = 0.979153 KL = 0.042036 A_rbm_5 = 0.232371
Epoch: 320 Fidelity = 0.979264 KL = 0.041764 A_rbm_5 = 0.224176
Epoch: 330 Fidelity = 0.981203 KL = 0.037786 A_rbm_5 = 0.231017
Epoch: 340 Fidelity = 0.982122 KL = 0.035848 A_rbm_5 = 0.233144
Epoch: 350 Fidelity = 0.982408 KL = 0.035287 A_rbm_5 = 0.239080
Epoch: 360 Fidelity = 0.983737 KL = 0.032537 A_rbm_5 = 0.232325
Epoch: 370 Fidelity = 0.984651 KL = 0.030705 A_rbm_5 = 0.233523
Epoch: 380 Fidelity = 0.985230 KL = 0.029546 A_rbm_5 = 0.235031
Epoch: 390 Fidelity = 0.985815 KL = 0.028345 A_rbm_5 = 0.235860
Epoch: 400 Fidelity = 0.986262 KL = 0.027459 A_rbm_5 = 0.240407
Epoch: 410 Fidelity = 0.986678 KL = 0.026623 A_rbm_5 = 0.229870
Epoch: 420 Fidelity = 0.987422 KL = 0.025197 A_rbm_5 = 0.235147
Epoch: 430 Fidelity = 0.987339 KL = 0.025400 A_rbm_5 = 0.227832
Epoch: 440 Fidelity = 0.988037 KL = 0.023930 A_rbm_5 = 0.237405
Epoch: 450 Fidelity = 0.988104 KL = 0.023838 A_rbm_5 = 0.241163
Epoch: 460 Fidelity = 0.988751 KL = 0.022605 A_rbm_5 = 0.233818
Epoch: 470 Fidelity = 0.988836 KL = 0.022364 A_rbm_5 = 0.241944
Epoch: 480 Fidelity = 0.989127 KL = 0.021844 A_rbm_5 = 0.235669
Epoch: 490 Fidelity = 0.989361 KL = 0.021288 A_rbm_5 = 0.242225
Epoch: 500 Fidelity = 0.989816 KL = 0.020486 A_rbm_5 = 0.232313
Total time elapsed during training: 87.096 s

All of these training evaluators can be accessed after the training has completed. The code below shows this, along

10 Chapter 4. Reconstruction of a positive-real wavefunction
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with plots of each training evaluator as a function of epoch (training cycle number).

[8]: # Note that the key given to the *MetricEvaluator* must be
# what comes after callbacks[0].
fidelities = callbacks[0].Fidelity

# Alternatively, we can use the usual dictionary/list subsripting
# syntax. This is useful in cases where the name of the
# metric contains special characters or spaces.
KLs = callbacks[0]["KL"]
coeffs = callbacks[0]["A_rbm_5"]

epoch = np.arange(period, epochs + 1, period)

[9]: # Some parameters to make the plots look nice
params = {

"text.usetex": True,
"font.family": "serif",
"legend.fontsize": 14,
"figure.figsize": (10, 3),
"axes.labelsize": 16,
"xtick.labelsize": 14,
"ytick.labelsize": 14,
"lines.linewidth": 2,
"lines.markeredgewidth": 0.8,
"lines.markersize": 5,
"lines.marker": "o",
"patch.edgecolor": "black",

}
plt.rcParams.update(params)
plt.style.use("seaborn-deep")

[10]: # Plotting
fig, axs = plt.subplots(nrows=1, ncols=3, figsize=(14, 3))
ax = axs[0]
ax.plot(epoch, fidelities, "o", color="C0", markeredgecolor="black")
ax.set_ylabel(r"Fidelity")
ax.set_xlabel(r"Epoch")

ax = axs[1]
ax.plot(epoch, KLs, "o", color="C1", markeredgecolor="black")
ax.set_ylabel(r"KL Divergence")
ax.set_xlabel(r"Epoch")

ax = axs[2]
ax.plot(epoch, coeffs, "o", color="C2", markeredgecolor="black")
ax.set_ylabel(r"$A\psi_{RBM}[5]$")
ax.set_xlabel(r"Epoch")

plt.tight_layout()
plt.show()

4.2. Using QuCumber to reconstruct the wavefunction 11
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It should be noted that one could have just ran nn_state.fit(train_samples), which uses the default hyperparam-
eters and no training evaluators.

To demonstrate how important it is to find the optimal hyperparameters for a certain system, restart this notebook and
comment out the original fit statement, then uncomment and run the cell below.

[11]: # nn_state.fit(train_samples)

Using the non-default hyperparameters produced a fidelity of approximately 0.989, while the default hyperparameters
yield approximately 0.523!

The trained RBM can be saved to a pickle file with the name saved_params.pt for future use:

[12]: nn_state.save("saved_params.pt")

This saves the weights, visible biases and hidden biases as torch tensors under the following keys: weights,
visible_bias, hidden_bias.

12 Chapter 4. Reconstruction of a positive-real wavefunction



CHAPTER

FIVE

RECONSTRUCTION OF A COMPLEX WAVEFUNCTION

In this tutorial, a walkthrough of how to reconstruct a complex wavefunction via training a Restricted Boltzmann
Machine (RBM), the neural network behind QuCumber, will be presented.

5.1 The wavefunction to be reconstructed

The simple wavefunction below describing two qubits (coefficients stored in qubits_psi.txt) will be reconstructed.

|𝜓⟩ = 𝛼|00⟩ + 𝛽|01⟩ + 𝛾|10⟩ + 𝛿|11⟩

where the exact values of 𝛼, 𝛽, 𝛾 and 𝛿 used for this tutorial are

𝛼 = 0.2861 + 0.0539𝑖

𝛽 = 0.3687 − 0.3023𝑖

𝛾 = −0.1672 − 0.3529𝑖

𝛿 = −0.5659 − 0.4639𝑖

The example dataset, qubits_train.txt, comprises of 500 𝜎 measurements made in various bases (X, Y and Z).
A corresponding file containing the bases for each data point in qubits_train.txt, qubits_train_bases.txt, is
also required. As per convention, spins are represented in binary notation with zero and one denoting spin-down and
spin-up, respectively.

5.2 Using qucumber to reconstruct the wavefunction

5.2.1 Imports

To begin the tutorial, first import the required Python packages.

[1]: import numpy as np
import torch
import matplotlib.pyplot as plt

from qucumber.nn_states import ComplexWaveFunction

from qucumber.callbacks import MetricEvaluator

import qucumber.utils.unitaries as unitaries
import qucumber.utils.cplx as cplx

(continues on next page)

13



QuCumber Documentation, Release v1.3.2

(continued from previous page)

import qucumber.utils.training_statistics as ts
import qucumber.utils.data as data
import qucumber

# set random seed on cpu but not gpu, since we won't use gpu for this tutorial
qucumber.set_random_seed(1234, cpu=True, gpu=False)

The Python class ComplexWaveFunction contains generic properties of a RBM meant to reconstruct a complex wave-
function, the most notable one being the gradient function required for stochastic gradient descent.

To instantiate a ComplexWaveFunction object, one needs to specify the number of visible and hidden units in the
RBM. The number of visible units, num_visible, is given by the size of the physical system, i.e. the number of spins
or qubits (2 in this case), while the number of hidden units, num_hidden, can be varied to change the expressiveness
of the neural network.

Note: The optimal num_hidden : num_visible ratio will depend on the system. For the two-qubit wavefunction
described above, good results can be achieved when this ratio is 1.

On top of needing the number of visible and hidden units, a ComplexWaveFunction object requires the user to input
a dictionary containing the unitary operators (2x2) that will be used to rotate the qubits in and out of the computational
basis, Z, during the training process. The unitaries utility will take care of creating this dictionary.

The MetricEvaluator class and training_statistics utility are built-in amenities that will allow the user to
evaluate the training in real time.

Lastly, the cplx utility allows QuCumber to be able to handle complex numbers as they are not currently supported by
PyTorch.

5.2.2 Training

To evaluate the training in real time, the fidelity between the true wavefunction of the system and the wavefunction
that QuCumber reconstructs, |⟨𝜓|𝜓𝑅𝐵𝑀 ⟩|2, will be calculated along with the Kullback-Leibler (KL) divergence (the
RBM’s cost function). First, the training data and the true wavefunction of this system need to be loaded using the
data utility.

[2]: train_path = "qubits_train.txt"
train_bases_path = "qubits_train_bases.txt"
psi_path = "qubits_psi.txt"
bases_path = "qubits_bases.txt"

train_samples, true_psi, train_bases, bases = data.load_data(
train_path, psi_path, train_bases_path, bases_path

)

The file qubits_bases.txt contains every unique basis in the qubits_train_bases.txt file. Calculation of the
full KL divergence in every basis requires the user to specify each unique basis.

As previously mentioned, a ComplexWaveFunction object requires a dictionary that contains the unitary operators
that will be used to rotate the qubits in and out of the computational basis, Z, during the training process. In the case of
the provided dataset, the unitaries required are the well-known 𝐻 , and 𝐾 gates. The dictionary needed can be created
with the following command.

14 Chapter 5. Reconstruction of a complex wavefunction



QuCumber Documentation, Release v1.3.2

[3]: unitary_dict = unitaries.create_dict()
# unitary_dict = unitaries.create_dict(<unitary_name>=torch.tensor([[real part],
# [imaginary part]],
# dtype=torch.double)

If the user wishes to add their own unitary operators from their experiment to unitary_dict, uncomment the block
above. When unitaries.create_dict() is called, it will contain the identity and the 𝐻 and 𝐾 gates by default
under the keys “Z”, “X” and “Y”, respectively.

The number of visible units in the RBM is equal to the number of qubits. The number of hidden units will also be taken
to be the number of visible units.

[4]: nv = train_samples.shape[-1]
nh = nv

nn_state = ComplexWaveFunction(
num_visible=nv, num_hidden=nh, unitary_dict=unitary_dict, gpu=False

)

If gpu=True (the default), QuCumber will attempt to run on a GPU if one is available (if one is not available, QuCumber
will fall back to CPU). If one wishes to guarantee that QuCumber runs on the CPU, add the flag gpu=False in the
ComplexWaveFunction object instantiation.

Now the hyperparameters of the training process can be specified.

1. epochs: the total number of training cycles that will be performed (default = 100)

2. pos_batch_size: the number of data points used in the positive phase of the gradient (default = 100)

3. neg_batch_size: the number of data points used in the negative phase of the gradient (default =
pos_batch_size)

4. k: the number of contrastive divergence steps (default = 1)

5. lr: the learning rate (default = 0.001)

Note: For more information on the hyperparameters above, it is strongly encouraged that the user to read through
the brief, but thorough theory document on RBMs. One does not have to specify these hyperparameters, as their
default values will be used without the user overwriting them. It is recommended to keep with the default values
until the user has a stronger grasp on what these hyperparameters mean. The quality and the computational
efficiency of the training will highly depend on the choice of hyperparameters. As such, playing around with the
hyperparameters is almost always necessary.

The two-qubit example in this tutorial should be extremely easy to train, regardless of the choice of hyperparameters.
However, the hyperparameters below will be used.

[5]: epochs = 500
pbs = 100 # pos_batch_size
nbs = pbs # neg_batch_size
lr = 0.1
k = 10

For evaluating the training in real time, the MetricEvaluator will be called to calculate the training evaluators every
10 epochs. The MetricEvaluator requires the following arguments.

1. period: the frequency of the training evaluators being calculated (e.g. period=200 means that the
MetricEvaluator will compute the desired metrics every 200 epochs)

5.2. Using qucumber to reconstruct the wavefunction 15
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2. A dictionary of functions you would like to reference to evaluate the training (arguments required for these
functions are keyword arguments placed after the dictionary)

The following additional arguments are needed to calculate the fidelity and KL divergence in the
training_statistics utility.

• target_psi (the true wavefunction of the system)

• space (the entire Hilbert space of the system)

The training evaluators can be printed out via the verbose=True statement.

Although the fidelity and KL divergence are excellent training evaluators, they are not practical to calculate in most
cases; the user may not have access to the target wavefunction of the system, nor may generating the Hilbert space of
the system be computationally feasible. However, evaluating the training in real time is extremely convenient.

Any custom function that the user would like to use to evaluate the training can be given to the MetricEvaluator, thus
avoiding having to calculate fidelity and/or KL divergence. As an example, functions that calculate the the norm of each
of the reconstructed wavefunction’s coefficients are presented. Any custom function given to MetricEvaluatormust
take the neural-network state (in this case, the ComplexWaveFunction object) and keyword arguments. Although the
given example requires the Hilbert space to be computed, the scope of the MetricEvaluator’s ability to be able to
handle any function should still be evident.

[6]: def alpha(nn_state, space, **kwargs):
rbm_psi = nn_state.psi(space)
normalization = nn_state.normalization(space).sqrt_()
alpha_ = cplx.norm(

torch.tensor([rbm_psi[0][0], rbm_psi[1][0]], device=nn_state.device)
/ normalization

)

return alpha_

def beta(nn_state, space, **kwargs):
rbm_psi = nn_state.psi(space)
normalization = nn_state.normalization(space).sqrt_()
beta_ = cplx.norm(

torch.tensor([rbm_psi[0][1], rbm_psi[1][1]], device=nn_state.device)
/ normalization

)

return beta_

def gamma(nn_state, space, **kwargs):
rbm_psi = nn_state.psi(space)
normalization = nn_state.normalization(space).sqrt_()
gamma_ = cplx.norm(

torch.tensor([rbm_psi[0][2], rbm_psi[1][2]], device=nn_state.device)
/ normalization

)

return gamma_

(continues on next page)
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def delta(nn_state, space, **kwargs):
rbm_psi = nn_state.psi(space)
normalization = nn_state.normalization(space).sqrt_()
delta_ = cplx.norm(

torch.tensor([rbm_psi[0][3], rbm_psi[1][3]], device=nn_state.device)
/ normalization

)

return delta_

Now the basis of the Hilbert space of the system must be generated in order to compute the fidelity, KL divergence,
and the dictionary of functions the user would like to compute. These metrics will be evaluated every period epochs,
which is a parameter that must be given to the MetricEvaluator.

Note that some of the coefficients are not being evaluated as they are commented out. This is simply to avoid cluttering
the output, and may be uncommented by the user.

[7]: period = 25
space = nn_state.generate_hilbert_space()

callbacks = [
MetricEvaluator(

period,
{

"Fidelity": ts.fidelity,
"KL": ts.KL,
"norm": alpha,
# "norm": beta,
# "norm": gamma,
# "norm": delta,

},
target=true_psi,
bases=bases,
verbose=True,
space=space,

)
]

Now the training can begin. The ComplexWaveFunction object has a function called fit which takes care of this.

[8]: nn_state.fit(
train_samples,
epochs=epochs,
pos_batch_size=pbs,
neg_batch_size=nbs,
lr=lr,
k=k,
input_bases=train_bases,
callbacks=callbacks,
time=True,

)

Epoch: 25 Fidelity = 0.940240 KL = 0.032256 norm = 0.258429
(continues on next page)
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Epoch: 50 Fidelity = 0.974944 KL = 0.017143 norm = 0.260490
Epoch: 75 Fidelity = 0.984727 KL = 0.012232 norm = 0.270684
Epoch: 100 Fidelity = 0.987769 KL = 0.010389 norm = 0.269163
Epoch: 125 Fidelity = 0.988929 KL = 0.009581 norm = 0.261813
Epoch: 150 Fidelity = 0.989075 KL = 0.009273 norm = 0.271764
Epoch: 175 Fidelity = 0.989197 KL = 0.008928 norm = 0.267943
Epoch: 200 Fidelity = 0.989451 KL = 0.008817 norm = 0.259327
Epoch: 225 Fidelity = 0.990894 KL = 0.007215 norm = 0.269941
Epoch: 250 Fidelity = 0.991517 KL = 0.006804 norm = 0.261673
Epoch: 275 Fidelity = 0.991808 KL = 0.006408 norm = 0.261002
Epoch: 300 Fidelity = 0.992318 KL = 0.005788 norm = 0.274654
Epoch: 325 Fidelity = 0.992078 KL = 0.005881 norm = 0.266831
Epoch: 350 Fidelity = 0.991938 KL = 0.006020 norm = 0.262980
Epoch: 375 Fidelity = 0.991670 KL = 0.006181 norm = 0.270877
Epoch: 400 Fidelity = 0.992082 KL = 0.005945 norm = 0.255576
Epoch: 425 Fidelity = 0.992678 KL = 0.005130 norm = 0.259746
Epoch: 450 Fidelity = 0.993102 KL = 0.004702 norm = 0.259373
Epoch: 475 Fidelity = 0.993109 KL = 0.004765 norm = 0.255803
Epoch: 500 Fidelity = 0.992805 KL = 0.004785 norm = 0.261486
Total time elapsed during training: 49.059 s

All of these training evaluators can be accessed after the training has completed, as well. The code below shows this,
along with plots of each training evaluator versus the training cycle number (epoch).

[9]: # Note that the key given to the *MetricEvaluator* must be
# what comes after callbacks[0].
fidelities = callbacks[0].Fidelity

# Alternatively, we may use the usual dictionary/list subscripting
# syntax. This is useful in cases where the name of the metric
# may contain special characters or spaces.
KLs = callbacks[0]["KL"]
coeffs = callbacks[0]["norm"]
epoch = np.arange(period, epochs + 1, period)

[10]: # Some parameters to make the plots look nice
params = {

"text.usetex": True,
"font.family": "serif",
"legend.fontsize": 14,
"figure.figsize": (10, 3),
"axes.labelsize": 16,
"xtick.labelsize": 14,
"ytick.labelsize": 14,
"lines.linewidth": 2,
"lines.markeredgewidth": 0.8,
"lines.markersize": 5,
"lines.marker": "o",
"patch.edgecolor": "black",

}
plt.rcParams.update(params)
plt.style.use("seaborn-deep")
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[11]: fig, axs = plt.subplots(nrows=1, ncols=3, figsize=(14, 3))
ax = axs[0]
ax.plot(epoch, fidelities, "o", color="C0", markeredgecolor="black")
ax.set_ylabel(r"Fidelity")
ax.set_xlabel(r"Epoch")

ax = axs[1]
ax.plot(epoch, KLs, "o", color="C1", markeredgecolor="black")
ax.set_ylabel(r"KL Divergence")
ax.set_xlabel(r"Epoch")

ax = axs[2]
ax.plot(epoch, coeffs, "o", color="C2", markeredgecolor="black")
ax.set_ylabel(r"$\vert\alpha\vert$")
ax.set_xlabel(r"Epoch")

plt.tight_layout()
plt.show()

It should be noted that one could have just run nn_state.fit(train_samples) using the default hyperparameters
and no training evaluators, which would induce different convergence behavior.

At the end of the training process, the network parameters (the weights, visible biases, and hidden biases) are stored in
the ComplexWaveFunction object. One can save them to a pickle file, which will be called saved_params.pt, with
the following command.

[12]: nn_state.save("saved_params.pt")

This saves the weights, visible biases and hidden biases as torch tensors under the following keys: weights,
visible_bias, hidden_bias.

5.2. Using qucumber to reconstruct the wavefunction 19
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CHAPTER

SIX

RECONSTRUCTION OF A DENSITY MATRIX

In this tutorial, a walkthrough of how to reconstruct a density matrix via training a pair of modified Restricted Boltzmann
Machines is presented

6.1 The density matrix to be reconstructed

The density matrix that will be be reconstructed is the density matrix associated with the 2-qubit W state

|𝜓⟩ =
1√
2
|01⟩ +

1√
2
|10⟩

so that

𝜌 = |𝜓⟩⟨𝜓|

with global depolarization probability 𝑝𝑑𝑒𝑝 = 0.5 such that

𝜌𝑛𝑒𝑤 = (1 − 𝑝𝑑𝑒𝑝) 𝜌+
𝑝𝑑𝑒𝑝
2𝑁

𝐼

where 𝐼 is the identity matrix, representing the maximally mixed state.

The example dataset, N2_W_state_100_samples_data.txt, is comprised of 900 𝜎𝑧 measurements, 100 in each of
the 32 permutations of two of the bases X, Y and Z. A corresponding file containing the bases for each data point,
N2_W_state_100_samples_bases.txt, is also required.

In this tutorial is also included versions with 1000 measurements in each basis, to illustrate the improvements to recon-
struction fidelity of a larger data set. The measurements and bases are stored in N2_W_state_1000_samples_data.
txt, and N2_W_state_1000_samples_bases.txt respectively.

The set of all 3^2 bases in which measurements are made is stored in N2_IC_bases.txt. Finally, the real and imagi-
nary parts of the matrix are stored in N2_W_state_target_real.txt and N2_W_state_target_imag.txt respec-
tively. As per convention, spins are represented in binary notation with zero and one denoting spin-up and spin-down,
respectively.

6.2 Using QuCumber to reconstruct the density matrix

6.2.1 Imports

To begin the tutorial, first import the required Python packages.
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[1]: import numpy as np
import matplotlib.pyplot as plt

import torch

from qucumber.nn_states import DensityMatrix

from qucumber.callbacks import MetricEvaluator
import qucumber.utils.unitaries as unitaries

import qucumber.utils.training_statistics as ts
import qucumber.utils.data as data
import qucumber

# set random seed on cpu but not gpu, since we won't use gpu for this tutorial
qucumber.set_random_seed(1234, cpu=True, gpu=False)

The Python class DensityMatrix contains the properties of an RBM needed to reconstruct the density matrix, as
demonstrated in this paper here.

To instantiate a DensityMatrix object, one needs to specify the number of visible, hidden and auxiliary units in the
RBM. The number of visible units, num_visible, is given by the size of the physical system, i.e. the number of spins
or qubits (2 in this case). On the other hand, the number of hidden units, num_hidden, can be varied to change the
expressiveness of the neural network, and the number of auxiliary units, num_aux, can be varied depending on the
extent of purification required of the system.

On top of needing the number of visible, hidden and auxiliary units, a DensityMatrix object requires the user to input
a dictionary containing the unitary operators (2x2) that will be used to rotate the qubits in and out of the computational
basis, Z, during the training process. The unitaries utility will take care of creating this dictionary.

The MetricEvaluator class and training_statistics utility are built-in amenities that will allow the user to
evaluate the training in real time.

6.2.2 Training

To evaluate the training in real time, the fidelity between the true wavefunction of the system and the wavefunction that
QuCumber reconstructs,

Tr

(︂√︁√
𝜌𝑅𝐵𝑀𝜌

√
𝜌𝑅𝐵𝑀

)︂
will be calculated along with the Kullback-Leibler (KL) divergence (the RBM’s cost function). First, the training data
and the true wavefunction of this system need to be loaded using the data utility.

[2]: train_path = "N2_W_state_100_samples_data.txt"
train_bases_path = "N2_W_state_100_samples_bases.txt"
matrix_path_real = "N2_W_state_target_real.txt"
matrix_path_imag = "N2_W_state_target_imag.txt"
bases_path = "N2_IC_bases.txt"

train_samples, true_matrix, train_bases, bases = data.load_data_DM(
train_path, matrix_path_real, matrix_path_imag, train_bases_path, bases_path

)
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The file N2_IC_bases.txt contains every unique basis in the N2_W_state_100_samples_bases.txt file. Calcu-
lation of the full KL divergence in every basis requires the user to specify each unique basis.

As previously mentioned, a DensityMatrix object requires a dictionary that contains the unitary operators that will
be used to rotate the qubits in and out of the computational basis, Z, during the training process. In the case of the
provided dataset, the unitaries required are the well-known𝐻 , and𝐾 gates. The dictionary needed can be created with
the following command.

[3]: unitary_dict = unitaries.create_dict()
# unitary_dict = unitaries.create_dict(unitary_name=torch.tensor([[real part],
# [imaginary part]],
# dtype=torch.double)

If the user wishes to add their own unitary operators from their experiment to unitary_dict, uncomment the block
above. When unitaries.create_dict() is called, it will contain the identity and the 𝐻 and 𝐾 gates by default
under the keys “Z”, “X” and “Y”, respectively.

The number of visible units in the RBM is equal to the number of qubits. The number of hidden units will also be taken
to be the number of visible units.

[4]: nv = train_samples.shape[-1]
nh = na = nv

nn_state = DensityMatrix(
num_visible=nv, num_hidden=nh, num_aux=na, unitary_dict=unitary_dict, gpu=False

)

The number of visible, hidden, and auxiliary units must now be specified. These are given by nv, nh and na respectively.
The number of visible units is equal to the size of the system. The hidden and auxiliary units are hyperparameters that
must be provided by the user. With these, a DensityMatrix object can be instantiated.

Now the hyperparameters of the training process can be specified.

1. epochs: the total number of training cycles that will be performed (default = 100)

2. pos_batch_size: the number of data points used in the positive phase of the gradient (default = 100)

3. neg_batch_size: the number of data points used in the negative phase of the gradient (default =
pos_batch_size)

4. k: the number of contrastive divergence steps (default = 1)

5. lr: coefficient that scales the default value of the (non-constant) learning rate of the Adadelta algorithm (default
= 1)

Extra hyperparameters that we will be passing to the learning rate scheduler: 6. lr_drop_epochs: the number of
epochs after which to decay the learning rate by lr_drop_factor 7. lr_drop_factor: the factor by which the
learning rate drops at lr_drop_epoch or all epochs in lr_drop_epoch if it is a list

Set lr_drop_factor to 1.0 to maintain constant “base” learning rate for Adadelta optimization. The choice shown
here is optimized for this tutorial, but can (and should) be varied according to each instance

Note: For more information on the hyperparameters above, it is strongly encouraged that the user to read through the
brief, but thorough theory document on RBMs. One does not have to specify these hyperparameters, as their default
values will be used without the user overwriting them. It is recommended to keep with the default values until the
user has a stronger grasp on what these hyperparameters mean. The quality and the computational efficiency of the
training will highly depend on the choice of hyperparameters. As such, playing around with the hyperparameters is
almost always necessary.
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[5]: epochs = 500
pbs = 100 # pos_batch_size
nbs = pbs # neg_batch_size
lr = 10
k = 10
lr_drop_epoch = 125
lr_drop_factor = 0.5

For evaluating the training in real time, the MetricEvaluator will be called to calculate the training evaluators every
period epochs. The MetricEvaluator requires the following arguments.

1. period: the frequency of the training evaluators being calculated (e.g. period=200 means that the
MetricEvaluator will compute the desired metrics every 200 epochs)

2. A dictionary of functions you would like to reference to evaluate the training (arguments required for these
functions are keyword arguments placed after the dictionary)

The following additional arguments are needed to calculate the fidelity and KL divergence in the
training_statistics utility.

• target_matrix (the true density matrix of the system)

• space (the entire Hilbert space of the system)

The training evaluators can be printed out via the verbose=True statement.

Although the fidelity and KL divergence are excellent training evaluators, they are not practical to calculate in most
cases; the user may not have access to the target wavefunction of the system, nor may generating the Hilbert space of
the system be computationally feasible. However, evaluating the training in real time is extremely convenient.

Any custom function that the user would like to use to evaluate the training can be given to the MetricEvaluator,
thus avoiding having to calculate fidelity and/or KL divergence. As an example, a function to compute the partition
function of the current density matrix is presented. Any custom function given to MetricEvaluator must take the
neural-network state (in this case, the Density object) and keyword arguments. Although the given example requires
the Hilbert space to be computed, the scope of the MetricEvaluator’s ability to be able to handle any function should
still be evident.

[6]: def partition(nn_state, space, **kwargs):
return nn_state.rbm_am.partition(space)

Now the Hilbert space of the system must be generated for the fidelity and KL divergence and the dictionary of functions
the user would like to compute every period epochs must be given to the MetricEvaluator.

[7]: period = 25
space = nn_state.generate_hilbert_space()

callbacks = [
MetricEvaluator(

period,
{

"Fidelity": ts.fidelity,
"KL": ts.KL,
# "Partition Function": partition,

},
target=true_matrix,
bases=bases,
verbose=True,

(continues on next page)
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space=space,
)

]

Now the training can begin. The DensityMatrix object has a function called fit which takes care of this.

[8]: nn_state.fit(
data=train_samples,
input_bases=train_bases,
epochs=epochs,
pos_batch_size=pbs,
neg_batch_size=nbs,
lr=lr,
k=k,
bases=bases,
callbacks=callbacks,
time=True,
optimizer=torch.optim.Adadelta,
scheduler=torch.optim.lr_scheduler.StepLR,
scheduler_args={"step_size": lr_drop_epoch, "gamma": lr_drop_factor},

)

Epoch: 25 Fidelity = 0.863061 KL = 0.050122
Epoch: 50 Fidelity = 0.946054 KL = 0.013152
Epoch: 75 Fidelity = 0.950760 KL = 0.016754
Epoch: 100 Fidelity = 0.957204 KL = 0.015601
Epoch: 125 Fidelity = 0.960522 KL = 0.013925
Epoch: 150 Fidelity = 0.957411 KL = 0.017446
Epoch: 175 Fidelity = 0.961068 KL = 0.013377
Epoch: 200 Fidelity = 0.966589 KL = 0.010754
Epoch: 225 Fidelity = 0.951836 KL = 0.017970
Epoch: 250 Fidelity = 0.960255 KL = 0.012612
Epoch: 275 Fidelity = 0.961232 KL = 0.012477
Epoch: 300 Fidelity = 0.963946 KL = 0.011832
Epoch: 325 Fidelity = 0.959750 KL = 0.013571
Epoch: 350 Fidelity = 0.965108 KL = 0.011095
Epoch: 375 Fidelity = 0.965353 KL = 0.011048
Epoch: 400 Fidelity = 0.963568 KL = 0.011941
Epoch: 425 Fidelity = 0.966334 KL = 0.011148
Epoch: 450 Fidelity = 0.965549 KL = 0.011321
Epoch: 475 Fidelity = 0.965054 KL = 0.011573
Epoch: 500 Fidelity = 0.965568 KL = 0.010963
Total time elapsed during training: 175.240 s

All of these training evaluators can be accessed after the training has completed, as well. The code below shows this,
along with plots of each training evaluator versus the training cycle number (epoch).

[9]: fidelities = callbacks[0]["Fidelity"]
KLs = callbacks[0]["KL"]
epoch = np.arange(period, epochs + 1, period)

[10]: fig, axs = plt.subplots(nrows=1, ncols=2, figsize=(14, 3))
ax = axs[0]

(continues on next page)
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ax.plot(epoch, fidelities, "o", color="C0", markeredgecolor="black")
ax.set_ylabel(r"Fidelity")
ax.set_xlabel(r"Epoch")
ax.set_ylim(0.75, 1.00)

ax = axs[1]
ax.plot(epoch, KLs, "o", color="C1", markeredgecolor="black")
ax.set_ylabel(r"KL Divergence")
ax.set_xlabel(r"Epoch")

[10]: Text(0.5, 0, 'Epoch')

This saves the weights, and biases of the two internal RBMs as dictionaries containing torch tensors.

[11]: nn_state.save("saved_params_W_state.pt")
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CHAPTER

SEVEN

SAMPLING AND CALCULATING OBSERVABLES

7.1 Generate new samples

Firstly, to generate meaningful data, an RBM needs to be trained. Please refer to the tutorials 1 and 2 on training an
RBM-based Neural-Network-State if doing so using QuCumber is unclear. A Neural-Network-State (nn_state) of a
positive-real wavefunction describing a transverse-field Ising model (TFIM) with 10 sites has already been trained in
the first tutorial, with the parameters of the machine saved here as saved_params.pt. The autoload function can be
employed here to instantiate the corresponding PositiveWaveFunction object from the saved nn_state parameters.

[1]: import numpy as np
import torch
import matplotlib.pyplot as plt

import qucumber
from qucumber.nn_states import PositiveWaveFunction, DensityMatrix
from qucumber.observables import ObservableBase
from qucumber.observables.pauli import flip_spin
from qucumber.utils import cplx

from quantum_ising_chain import TFIMChainEnergy, Convergence

# set random seed on cpu but not gpu, since we won't use gpu for this tutorial
qucumber.set_random_seed(1234, cpu=True, gpu=False)
nn_state = PositiveWaveFunction.autoload("saved_params.pt", gpu=False)

A PositiveWaveFunction object has a property called sample that allows us to sample the learned distribution of
TFIM chains. The it takes the following arguments (along with a few others which are not relevant for our purposes):

1. k: the number of Gibbs steps to perform to generate the new samples. Increasing this number will produce
samples closer to the learned distribution, but will require more computation.

2. num_samples: the number of new data points to be generated

[2]: new_samples = nn_state.sample(k=100, num_samples=10000)
print(new_samples)

tensor([[1., 0., 1., ..., 1., 1., 1.],
[0., 0., 0., ..., 0., 0., 1.],
[0., 0., 0., ..., 1., 0., 1.],
...,
[0., 0., 0., ..., 0., 1., 1.],
[0., 0., 0., ..., 0., 0., 0.],
[0., 1., 1., ..., 0., 0., 0.]], dtype=torch.float64)
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7.1.1 Magnetization

With the newly generated samples, the user can now easily calculate observables that do not require any information
associated with the wavefunction and hence the nn_state. These are observables which are diagonal in the computa-
tional (Pauli Z) basis. A great example of this is the magnetization (in the Z direction). To calculate the magnetization,
the newly-generated samples must be converted to ± 1 from 1 and 0, respectively. The function below does the trick.

[3]: def to_pm1(samples):
return samples.mul(2.0).sub(1.0)

Now, the (absolute) magnetization in the Z-direction is calculated as follows.

[4]: def Magnetization(samples):
return to_pm1(samples).mean(1).abs().mean()

magnetization = Magnetization(new_samples).item()

print("Magnetization = %.5f" % magnetization)

Magnetization = 0.55752

The exact value for the magnetization is 0.5610.

The magnetization and the newly-generated samples can also be saved to a pickle file along with the nn_state param-
eters in the PositiveWaveFunction object.

[5]: nn_state.save(
"saved_params_and_new_data.pt",
metadata={"samples": new_samples, "magnetization": magnetization},

)

The metadata argument in the save function takes in a dictionary of data that you would like to save alongside the
nn_state parameters.

7.2 Calculate an observable using the Observable module

7.2.1 Magnetization (again)

QuCumber provides the Observable module to simplify estimation of expectations and variances of observables in
memory efficient ways. To start off, we’ll repeat the above example using the SigmaZ Observable module provided
with QuCumber.

[6]: from qucumber.observables import SigmaZ

We’ll compute the absolute magnetization again, for the sake of comparison with the previous example. We want to
use the samples drawn earlier to perform this estimate, so we use the statistics_from_samples function:

[7]: sz = SigmaZ(absolute=True)
sz.statistics_from_samples(nn_state, new_samples)

[7]: {'mean': 0.5575200000000005,
'variance': 0.09791724132414,

(continues on next page)

28 Chapter 7. Sampling and calculating observables



QuCumber Documentation, Release v1.3.2

(continued from previous page)

'std_error': 0.0031291730748576373,
'num_samples': 10000}

With this function we get the variance and standard error for free. Now you may be asking: “That’s not too difficult,
I could have computed those myself!”. The power of the Observable module comes from the fact that it simplifies
estimation of these values over a large number of samples. The statistics function computes these statistics by
generating the samples internally. Let’s see it in action:

[8]: %time sz.statistics(nn_state, num_samples=10000, burn_in=100)
# just think of burn_in as being equivalent to k for now

CPU times: user 1.74 s, sys: 0 ns, total: 1.74 s
Wall time: 504 ms

[8]: {'mean': 0.5534800000000003,
'variance': 0.09726161576157935,
'std_error': 0.0031186794603097535,
'num_samples': 10000}

Let’s consider what is taking place under the hood at the moment. The statistics function is drawing 10000 sam-
ples from the given nn_state, and cycling it through the visible and hidden layers for 100 Block Gibbs steps before
computing the statistics. This means that, at any given time it has to hold a matrix with 10000 rows and 10 (the number
of lattice sites) columns in memory, which becomes infeasible for large lattices or if we want to use more samples
to bring our standard error down. To bypass this issue, the statistics function allows us to specify the number of
Markov Chains to evolve using the nn_state, and will sample from these chains multiple times to produce enough
samples. It takes the following arguments:

• num_samples: the number of samples to generate internally

• num_chains: the number of Markov chains to run in parallel (default = 0, meaning num_chains =
num_samples)

• burn_in: the number of Gibbs steps to perform before recording any samples (default = 1000)

• steps: the number of Gibbs steps to perform between each sample; increase this to reduce the autocorrelation
between samples (default = 1)

• initial_state: the initial state of the Markov Chain. If given, num_chains will be ignored. (default = None)

• overwrite: Whether to overwrite the initial_state tensor, with the updated state of the Markov chain.
(default = False)

The statistics function will also return a dictionary containing the mean, standard error (of the mean), the variance,
and the total number of samples that were drawn with the keys mean, std_error, variance, and num_samples
respectively.

[9]: %time sz.statistics(nn_state, num_samples=10000, num_chains=1000, burn_in=100, steps=2)

CPU times: user 331 ms, sys: 0 ns, total: 331 ms
Wall time: 83.8 ms

[9]: {'mean': 0.55116,
'variance': 0.09716837123712346,
'std_error': 0.003117184165831776,
'num_samples': 10000}

Recall that, earlier, we had produced a batch of samples new_samples which we assumed were already converged to
the equilibrium after 100 Gibbs steps. We can use these pre-computed samples to skip the “burn-in” phase like so:
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[10]: %%time
sz.statistics(

nn_state, num_samples=10000, burn_in=0, steps=2, initial_state=new_samples[:1000, :]
)

CPU times: user 73.9 ms, sys: 0 ns, total: 73.9 ms
Wall time: 21.6 ms

[10]: {'mean': 0.5508999999999998,
'variance': 0.09669885988598853,
'std_error': 0.003109644029241748,
'num_samples': 10000}

We only took the first 1000 samples from new_samples in order to keep the number of Markov Chains the same as the
previous cell. Notice how much time was saved by initializing the chains using pre-equilibrated samples. In fact, one
could save even more time by skipping the generation of pre-equilibrated samples and using the nn_state’s training
data instead!

In addition to using less memory (since the matrix held in memory is now of size num_chains x num_sites = 1000
x 10), using fewer chains also produced a decent speed boost! Next, we’ll try increasing the total number of drawn
samples:

[11]: sz.statistics(nn_state, num_samples=int(1e7), num_chains=1000, burn_in=100, steps=2)

[11]: {'mean': 0.5505633800000023,
'variance': 0.09801013840398955,
'std_error': 9.900006990098014e-05,
'num_samples': 10000000}

Note how much we reduced our standard error just by increasing the number of drawn samples. Finally, we can also
draw samples of measurements of the observable using the sample function:

[12]: sz.sample(nn_state, k=100, num_samples=50)

[12]: tensor([0.2000, 1.0000, 0.0000, 0.4000, 0.2000, 0.4000, 0.4000, 0.4000, 0.6000,
1.0000, 1.0000, 0.6000, 0.4000, 0.0000, 0.4000, 0.4000, 0.8000, 1.0000,
0.0000, 0.4000, 0.0000, 0.0000, 0.8000, 0.8000, 0.8000, 0.8000, 0.6000,
0.8000, 0.6000, 1.0000, 0.4000, 0.4000, 0.4000, 0.4000, 0.8000, 0.2000,
0.2000, 0.0000, 0.8000, 0.4000, 0.6000, 0.0000, 0.2000, 1.0000, 0.4000,
0.8000, 0.2000, 0.4000, 1.0000, 0.6000], dtype=torch.float64)

Note that this function does not perform any fancy sampling tricks like statistics and is therefore susceptible to
“Out of Memory” errors.

7.2.2 TFIM Energy

Some observables cannot be computed directly from samples, but instead depend on the nn_state as previously
mentioned. For example, the magnetization of the TFIM simply depends on the samples the user gives as input. While
we did provide the nn_state as an argument when calling statistics_from_samples, SigmaZ ignores it. The
TFIM energy, on the other hand, is much more complicated. Consider the TFIM Hamiltonian:

𝐻 = −𝐽
∑︁
𝑖

𝜎𝑧
𝑖 𝜎

𝑧
𝑖+1 − ℎ

∑︁
𝑖

𝜎𝑥
𝑖

As our nn_state was trained in the Z-basis, the off-diagonal transverse-field term is impossible to compute just from
the samples; we need to know the value of the wavefunction for each sample as well. An example for the computa-
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tion of the energy is provided in the python file quantum_ising_chain.py, which takes advantage of QuCumber’s
Observable module.

quantum_ising_chain.py comprises of a class that computes the energy of a TFIM (TFIMChainEnergy) that inher-
its properties from the Observablemodule. To instantiate a TFIMChainEnergy object, the ℎ

𝐽 value must be specified.
The trained nn_state parameters are from the first tutorial, where the example data was from the TFIM with 10 sites
at its critical point (ℎ𝐽 = 1).

[13]: h = 1

tfim_energy = TFIMChainEnergy(h)

To go ahead and calculate the mean energy and its standard error from the previously generated samples from this
tutorial (new_samples), the statistics_from_samples function in the Observable module is called upon.

[14]: energy_stats = tfim_energy.statistics_from_samples(nn_state, new_samples)
print("Mean: %.4f" % energy_stats["mean"], "+/- %.4f" % energy_stats["std_error"])
print("Variance: %.4f" % energy_stats["variance"])

Mean: -1.2353 +/- 0.0005
Variance: 0.0022

The exact value for the energy is -1.2381.

To illustrate how quickly the energy converges as a function of the sampling step (i.e. the number of Gibbs steps to
perform to generate a new batch of samples), steps, the Convergence function in quantum_ising_chain.py will
do the trick. Convergence creates a batch of random samples initially, which is then used to generate a new batch of
samples from the nn_state. The TFIM energy will be calculated at every Gibbs step. Note that this function is not
available in the QuCumber API; it is only used here as an illustrative example.

[15]: steps = 200
num_samples = 10000

dict_observables = Convergence(nn_state, tfim_energy, num_samples, steps)

energy = dict_observables["energies"]
err_energy = dict_observables["error"]

step = np.arange(steps + 1)

E0 = -1.2381

ax = plt.axes()
ax.plot(step, abs((E0 - energy) / E0) * 100, color="red")
ax.hlines(abs((E0 - energy_stats["mean"]) / E0) * 100, 0, 200, color="black")
ax.set_xlim(0, steps)
ax.set_ylim(0, 0.6)
ax.set_xlabel("Gibbs Step")
ax.set_ylabel("% Error in Energy")

[15]: Text(0, 0.5, '% Error in Energy')
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One can see a brief transient period in the magnetization observable, before the state of the machine “warms up” to
equilibrium (this explains the burn_in argument we saw earlier). After that, the values fluctuate around the estimated
mean (the horizontal black line).

7.2.3 Combining observables

One may also add / subtract and multiply observables with each other or with real numbers. To illustrate this,
we will build an alternative implementation of the TFIM energy observable. First, we will introduce the built-in
NeighbourInteraction observable:

[16]: from qucumber.observables import NeighbourInteraction

The TFIM chain we trained the nn_state on did not have periodic boundary conditions, so periodic_bcs=False.
Meanwhile, c specifies the distance between interacting spins, that is, a given site will only interact with a site c places
away from itself; we set this to 1 as the TFIM chain has nearest-neighbour interactions.

[17]: nn_inter = NeighbourInteraction(periodic_bcs=False, c=1)

Next, we need the SigmaX observable, which computes the magnetization in the X-direction:

[18]: from qucumber.observables import SigmaX

Next, we build the Hamiltonian, setting ℎ = 𝐽 = 1:

[19]: h = J = 1
sx = SigmaX()
tfim = -J * nn_inter - h * sx

The same statistics of this new TFIM observable can also be calculated.

[20]: new_tfim_stats = tfim.statistics_from_samples(nn_state, new_samples)
print("Mean: %.4f" % new_tfim_stats["mean"], "+/- %.4f" % new_tfim_stats["std_error"])
print("Variance: %.4f" % new_tfim_stats["variance"])

Mean: -1.2353 +/- 0.0005
Variance: 0.0022
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The statistics above match with those computed earlier.

7.2.4 Rényi Entropy and the Swap operator

We can estimate the second Rényi Entropy using the Swap operator as shown by Hastings et al. (2010). The second
Rényi Entropy, in terms of the expectation of the Swap operator is given by:

𝑆2(𝐴) = − ln⟨Swap𝐴⟩

where 𝐴 is the subset of the lattice for which we wish to compute the Rényi entropy.

[21]: from qucumber.observables import SWAP

As an example, we will take the region 𝐴 consist of sites 0 through 4 (inclusive).

[22]: A = [0, 1, 2, 3, 4]
swap = SWAP(A)

swap_stats = swap.statistics_from_samples(nn_state, new_samples)
print("Mean: %.4f" % swap_stats["mean"], "+/- %.4f" % swap_stats["std_error"])
print("Variance: %.4f" % swap_stats["variance"])

Mean: 0.7838 +/- 0.0061
Variance: 0.3663

The second Rényi Entropy can be computed directly from the sample mean. The standard error of the entropy, from
first-order error analysis, is given by the standard error of the Swap operator divided by the mean of the Swap operator.

[23]: S_2 = -np.log(swap_stats["mean"])
S_2_error = abs(swap_stats["std_error"] / swap_stats["mean"])

print("S_2: %.4f" % S_2, "+/- %.4f" % S_2_error)

S_2: 0.2437 +/- 0.0077

7.2.5 Writing custom diagonal observables

QuCumber has a built-in module called Observable which makes it easy for the user to compute any arbitrary ob-
servable from the nn_state. To see the the Observable module in action, an example (diagonal) observable called
PIQuIL, which inherits properties from the Observable module, is shown below.

The PIQuIL observable takes a 𝜎𝑧 measurement at a site and multiplies it by the measurement two sites away
from it. There is also a parameter, 𝑃 , that determines the strength of each of these interactions. For example,
for the dataset (−1, 1, 1,−1), (1, 1, 1, 1) and (1, 1,−1, 1) with 𝑃 = 2, the PIQuIL for each data point would be
(2(−1 × 1) + 2(1 ×−1) = −4) , (2(1 × 1) + 2(1 × 1) = 4) and (2(1 ×−1) + 2(1 × 1) = 0), respectively.

[24]: class PIQuIL(ObservableBase):
def __init__(self, P):

self.name = "PIQuIL"
self.symbol = "Q"
self.P = P

(continues on next page)
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# Required : function that calculates the PIQuIL. Must be named "apply"
def apply(self, nn_state, samples):

samples = to_pm1(samples)
interaction_ = 0.0
for i in range(samples.shape[-1] - 2):

interaction_ += self.P * samples[:, i] * samples[:, i + 2]

return interaction_

P = 0.05
piquil = PIQuIL(P)

The apply function is contained in the Observable module, but is overwritten here. The apply function in
Observable will compute the observable itself and must take in the nn_state and a batch of samples as arguments.
Thus, any new class inheriting from Observable that the user would like to define must contain a function called
apply that calculates this new observable. For more details on apply, we refer to the documentation:

Although the PIQuIL observable could technically be computed without the first argument of apply since it does not
ever use the nn_state, we still include it in the list of arguments in order to conform to the interface provided in the
ObservableBase class.

Since we have already generated new samples of data, the PIQuIL observable’s mean, standard error and variance on
the new data can be calculated with the statistics_from_samples function in the Observable module. The user
must simply provide the nn_state and the samples as arguments.

[25]: piquil_stats1 = piquil.statistics_from_samples(nn_state, new_samples)

The statistics_from_samples function returns a dictionary containing the mean, standard error and the variance
with the keys “mean”, “std_error” and “variance”, respectively.

[26]: print(
"Mean PIQuIL: %.4f" % piquil_stats1["mean"], "+/- %.4f" % piquil_stats1["std_error"]

)
print("Variance: %.4f" % piquil_stats1["variance"])

Mean PIQuIL: 0.1762 +/- 0.0016
Variance: 0.0244

Exercise: We notice that the PIQuIL observable is essentially a scaled next-nearest-neighbours interaction. (a) Con-
struct an equivalent Observable object algebraically in a similar manner to the TFIM observable constructed above.
(b) Compute the statistics of this observable on new_samples, and compare to those computed using the PIQuIL
observable.

[27]: # solve the above exercise here
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7.2.6 Writing off-diagonal observables

Now, as the PIQuIL observable was diagonal, it was fairly easy to write. Things get a bit more complicated once we
consider off-diagonal observables, as we’d need to make use of information about the quantum state itself. In general,
computing an observable exactly with respect to the state 𝜌 requires performing a trace:

⟨𝑂⟩ = Tr [𝑂𝜌] =
∑︁
𝑖

⟨𝑖|𝑂𝜌|𝑖⟩ =
∑︁
𝑖𝑗

⟨𝑖|𝑂|𝑗⟩⟨𝑗|𝜌|𝑖⟩

where {|𝑖⟩}𝑖, {|𝑗⟩}𝑗 are two orthonormal bases spanning the Hilbert space. Multiplying the numerator and denominator
by ⟨𝑖|𝜌|𝑖⟩ gives:

⟨𝑂⟩ =
∑︁
𝑖

⟨𝑖|𝜌|𝑖⟩
∑︁
𝑗

⟨𝑗|𝜌|𝑖⟩
⟨𝑖|𝜌|𝑖⟩

⟨𝑖|𝑂|𝑗⟩ =
∑︁
𝑖

𝜌𝑖𝑖
∑︁
𝑗

𝜌𝑗𝑖
𝜌𝑖𝑖
𝑂𝑖𝑗 =

∑︁
𝑖

𝜌𝑖𝑖𝒪𝑖

Hence, computing the expectation of the observable 𝑂 with respect to 𝜌, amounts to estimating the so-called “local-
estimator” 𝒪 with respect to the probability distribution {𝜌𝑖𝑖}𝑖. Setting {|𝑖⟩}𝑖 to our computational basis states {|𝜎⟩},
we note that, as we are able to draw samples from 𝜌 in the computational basis using our nn_state, we can easily
estimate the expectation of 𝑂:

⟨𝑂⟩ =
∑︁
𝜎

𝜌𝜎𝜎𝒪(𝜎) ≈ 1

|𝒟|
∑︁
𝜎∈𝒟

𝒪(𝜎)

where 𝒟 denotes the set of drawn samples. Recall that the local-estimator is:

𝒪(𝜎) =
∑︁
𝜎′

𝜌(𝜎′, 𝜎)

𝜌(𝜎, 𝜎)
𝑂(𝜎, 𝜎′)

which, in the case of a pure state 𝜌 = |𝜓⟩⟨𝜓|, reduces to:

𝒪(𝜎) =
∑︁
𝜎′

𝜓(𝜎′)

𝜓(𝜎)
𝑂(𝜎, 𝜎′)

The task of the apply function, is actually to compute the local-estimator, given a sample 𝜎. Ideally, this function
would take into account the structure of 𝑂 in order to perform this computation efficiently, and avoid iterating through
every entry of the wavefunction of density matrix unnecessarily.

It should be noted that, though the Neural-Network-States provided by QuCumber do not give normalized probability
estimates, this is not an issue for computing the local-estimator, as the normalization constant cancels out.

As an example, we will write a simplified version of the SigmaX observable. But first, let’s see what the statistics of
the official version of SigmaX are, for the sake of later comparison:

[28]: sx.statistics_from_samples(nn_state, new_samples)

[28]: {'mean': 0.7293210861294865,
'variance': 0.07933831206407158,
'std_error': 0.002816705736566594,
'num_samples': 10000}

[29]: class MySigmaX(ObservableBase):
def __init__(self):

self.name = "SigmaX"
self.symbol = "X"

def apply(self, nn_state, samples):
(continues on next page)
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samples = samples.to(device=nn_state.device)

# vectors of shape: (2, num_samples,)
denom = cplx.conjugate(nn_state.psi(samples))
numer_sum = torch.zeros_like(denom)

for i in range(samples.shape[-1]): # sum over spin sites
samples_ = flip_spin(i, samples.clone()) # flip the spin at site i

# compute the numerator of the importance and add it to the running sum
numer = cplx.conjugate(nn_state.psi(samples_))
numer_sum.add_(numer)

mag = cplx.elementwise_division(numer_sum, denom)

# take real part (imaginary part should be approximately zero)
# and divide by number of spins
return cplx.real(mag).div_(samples.shape[-1])

[30]: MySigmaX().statistics_from_samples(nn_state, new_samples)

[30]: {'mean': 0.7293210861294865,
'variance': 0.07933831206407158,
'std_error': 0.002816705736566594,
'num_samples': 10000}

We’re on the right track! The only remaining problem is generalizing this to work with mixed states.
Note that in both expressions of the local-estimator, we need to compute a ratio dependent on 𝜎 and 𝜎′.
The Neural-Network-States provided by QuCumber implement the functions importance_sampling_weight,
importance_sampling_numerator, and importance_sampling_denominator in order to simplify writing ob-
servables for both pure and mixed states.

In simple cases, we’d only need to make use of importance_sampling_weight, however, note that, since the denom-
inator can be factored out of the summation, it is more efficient to compute the numerator and denominator separately
in order to avoid duplicating work. Let’s update our version of the X-magnetization observable to support mixed states:

[31]: class MySigmaX(ObservableBase):
def __init__(self):

self.name = "SigmaX"
self.symbol = "X"

def apply(self, nn_state, samples):
samples = samples.to(device=nn_state.device)

# vectors of shape: (2, num_samples,)
denom = nn_state.importance_sampling_denominator(samples)
numer_sum = torch.zeros_like(denom)

for i in range(samples.shape[-1]): # sum over spin sites
samples_ = flip_spin(i, samples.clone()) # flip the spin at site i

# compute the numerator of the importance and add it to the running sum
numer = nn_state.importance_sampling_numerator(samples_, samples)

(continues on next page)
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numer_sum.add_(numer)

mag = cplx.elementwise_division(numer_sum, denom)

# take real part (imaginary part should be approximately zero)
# and divide by number of spins
return cplx.real(mag).div_(samples.shape[-1])

[32]: MySigmaX().statistics_from_samples(nn_state, new_samples)

[32]: {'mean': 0.7293210861294865,
'variance': 0.07933831206407158,
'std_error': 0.002816705736566594,
'num_samples': 10000}

Note that not much has actually changed in our code. In fact, one can often write local-estimators for observables
assuming a pure-state, and then later easily generalize their code to support mixed states using the abstract functions
discussed earlier. As a final sanity check, let’s try estimating the statistics of MySigmaX for a randomly initialized
DensityMatrix, and compare the output to that of the official implementation:

[33]: mixed_nn_state = DensityMatrix(nn_state.num_visible, gpu=False)

(
sx.statistics_from_samples(mixed_nn_state, new_samples),
MySigmaX().statistics_from_samples(mixed_nn_state, new_samples),

)

[33]: ({'mean': 0.9930701314464155,
'variance': 0.010927188103705533,
'std_error': 0.0010453319139730468,
'num_samples': 10000},
{'mean': 0.9930701314464155,
'variance': 0.010927188103705533,
'std_error': 0.0010453319139730468,
'num_samples': 10000})

7.3 Estimating Statistics of Many Observables Simultaneously

One may often be concerned with estimating the statistics of many observables simultaneously. In order to avoid
excess memory usage, it makes sense to reuse the same set of samples to estimate each observable. When we need a
large number of samples however, we run into the same issue mentioned earlier: we may run out of memory storing
the samples. QuCumber provides a System object to keep track of multiple observables and estimate their statistics
efficiently.

[34]: from qucumber.observables import System
from pprint import pprint

At this point we must make a quick aside: internally, System keeps track of multiple observables through their name
field (which we saw in the definition of the PIQuIL observable). This name is returned by Python’s built-in repr
function, which is automatically called when we try to display an Observable object in Jupyter:
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[35]: piquil

[35]: PIQuIL

[36]: tfim

[36]: ((-1 * NeighbourInteraction(periodic_bcs=False, c=1)) + -(1 * SigmaX))

Note how the TFIM energy observable’s name is quite complicated, due to the fact that we constructed it algebraically
as opposed to the PIQuIL observable which was built from scratch and manually assigned a name. In order to assign
a name to tfim, we do the following:

[37]: tfim.name = "TFIM"
tfim

[37]: TFIM

Now, back to System. We’d like to create a System object which keeps track of the absolute magnetization, the energy
of the chain, the Swap observable (of region 𝐴, as defined earlier), and finally, the PIQuIL observable.

[38]: tfim_system = System(sz, tfim, swap, piquil)

[39]: pprint(tfim_system.statistics_from_samples(nn_state, new_samples))

{'PIQuIL': {'mean': 0.1762100000000003,
'num_samples': 10000,
'std_error': 0.001561328717706924,
'variance': 0.024377473647363472},

'SWAP': {'mean': 0.7837510693478925,
'num_samples': 10000,
'std_error': 0.006052467264446535,
'variance': 0.3663235998719692},

'SigmaZ': {'mean': 0.5575200000000005,
'num_samples': 10000,
'std_error': 0.0031291730748576373,
'variance': 0.09791724132414},

'TFIM': {'mean': -1.2352610861294844,
'num_samples': 10000,
'std_error': 0.0004669027817740233,
'variance': 0.002179982076283212}}

These all match with the values computed earlier. Next, we will compute these statistics from fresh samples drawn
from the nn_state:

[40]: %%time
pprint(

tfim_system.statistics(
nn_state, num_samples=10000, num_chains=1000, burn_in=100, steps=2

)
)

{'PIQuIL': {'mean': 0.17354,
'num_samples': 10000,
'std_error': 0.001551072990784856,
'variance': 0.02405827422742278},

(continues on next page)
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'SWAP': {'mean': 0.7824233758221596,
'num_samples': 10000,
'std_error': 0.006105647043859781,
'variance': 0.3727892582419368},

'SigmaZ': {'mean': 0.5508199999999999,
'num_samples': 10000,
'std_error': 0.0031138886284257233,
'variance': 0.09696302390239034},

'TFIM': {'mean': -1.2351832610706792,
'num_samples': 10000,
'std_error': 0.00046588592121667226,
'variance': 0.002170496915879073}}

CPU times: user 741 ms, sys: 0 ns, total: 741 ms
Wall time: 192 ms

Compare this to computing these statistics on each observable individually:

[41]: %%time
pprint(

{
obs.name: obs.statistics(

nn_state, num_samples=10000, num_chains=1000, burn_in=100, steps=2
)
for obs in [piquil, swap, sz, tfim]

}
)

{'PIQuIL': {'mean': 0.17636999999999997,
'num_samples': 10000,
'std_error': 0.0015554112769374036,
'variance': 0.024193042404240445},

'SWAP': {'mean': 0.7788363185216998,
'num_samples': 10000,
'std_error': 0.005804524946475529,
'variance': 0.3369250985425674},

'SigmaZ': {'mean': 0.55804,
'num_samples': 10000,
'std_error': 0.0031169387820002294,
'variance': 0.09715307370737074},

'TFIM': {'mean': -1.2345632953955774,
'num_samples': 10000,
'std_error': 0.0004844496452134716,
'variance': 0.0023469145874745853}}

CPU times: user 1.59 s, sys: 0 ns, total: 1.59 s
Wall time: 401 ms

Note the slowdown. This is, as mentioned before, due to the fact that the System object uses the same samples to
estimate statistics for all of the observables it is keeping track of.
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7.3.1 Template for your custom observable

Here is a generic template for you to try using the Observable module yourself.

[42]: class YourObservable(ObservableBase):
def __init__(self, your_constants):

self.your_constants = your_constants
self.name = "Observable_Name"

# The algebraic symbol representing this Observable.
# Returned by Python's built-in str() function
self.symbol = "O"

def apply(self, nn_state, samples):
# arguments of "apply" must be in this order

# calculate your observable for each data point
obs = torch.tensor([42] * len(samples))

# make sure the observables are on the same device and have the
# same dtype as the samples
obs = obs.to(samples)

# return a torch tensor containing the observable values
return obs
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CHAPTER

EIGHT

TRAINING WHILE MONITORING OBSERVABLES

As seen in the first tutorial that went through reconstructing the wavefunction describing the TFIM with 10 sites at its
critical point, the user can evaluate the training in real time with the MetricEvaluator and custom functions. What is
most likely more impactful in many cases is to calculate an observable, like the energy, during the training process. This
is slightly more computationally involved than using the MetricEvaluator to evaluate functions because observables
require that samples be drawn from the RBM.

Luckily, QuCumber also has a module very similar to the MetricEvaluator, but for observables. This is called the
ObservableEvaluator. This tutorial uses the ObservableEvaluator to calculate the energy during the training on
the TFIM data in the first tutorial. We will use the same training hyperparameters as before.

It is assumed that the user has worked through Tutorial 3 beforehand. Recall that quantum_ising_chain.py contains
the TFIMChainEnergy class that inherits from the Observable module. The exact ground-state energy is −1.2381.

[1]: import os.path

import numpy as np
import matplotlib.pyplot as plt

from qucumber.nn_states import PositiveWaveFunction
from qucumber.callbacks import ObservableEvaluator

import qucumber
import qucumber.utils.data as data

from quantum_ising_chain import TFIMChainEnergy

# set random seed on cpu but not gpu, since we won't use gpu for this tutorial
qucumber.set_random_seed(1234, cpu=True, gpu=False)

[2]: train_data = data.load_data(
os.path.join("..", "Tutorial1_TrainPosRealWaveFunction", "tfim1d_data.txt")

)[0]

nv = train_data.shape[-1]
nh = nv

nn_state = PositiveWaveFunction(num_visible=nv, num_hidden=nh, gpu=False)

epochs = 1000
pbs = 100 # pos_batch_size
nbs = 200 # neg_batch_size

(continues on next page)
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lr = 0.01
k = 10

period = 100

h = 1
num_samples = 10000
burn_in = 100
steps = 100

tfim_energy = TFIMChainEnergy(h)

Now, the ObservableEvaluator can be called. The ObservableEvaluator requires the following arguments.

1. period: the frequency of the training evaluators being calculated (e.g. period=200 means that the
MetricEvaluator will compute the desired metrics every 200 epochs)

2. A list of Observable objects you would like to reference to evaluate the training (arguments required
for generating samples to calculate the observables are keyword arguments placed after the list). The
ObservableEvaluator uses a System object (discussed in the previous tutorial) under the hood in order to
estimate statistics efficiently.

The following additional arguments are needed to calculate the statistics on the generated samples during training
(these are the arguments of the statistics function in the Observablemodule, minus the nn_state argument; this
gets passed in as an argument to fit). For more detail on these arguments, refer to either the previous tutorial or the
documentation for Observable.statistics.

• num_samples: the number of samples to generate internally

• num_chains: the number of Markov chains to run in parallel (default = 0)

• burn_in: the number of Gibbs steps to perform before recording any samples (default = 1000)

• steps: the number of Gibbs steps to perform between each sample (default = 1)

The training evaluators can be printed out by setting the verbose keyword argument to True.

[3]: callbacks = [
ObservableEvaluator(

period,
[tfim_energy],
verbose=True,
num_samples=num_samples,
burn_in=burn_in,
steps=steps,

)
]

nn_state.fit(
train_data,
epochs=epochs,
pos_batch_size=pbs,
neg_batch_size=nbs,
lr=lr,
k=k,

(continues on next page)
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callbacks=callbacks,
)

Epoch: 100
TFIMChainEnergy:
mean: -1.193284 variance: 0.023108 std_error: 0.001520

Epoch: 200
TFIMChainEnergy:
mean: -1.217176 variance: 0.012590 std_error: 0.001122

Epoch: 300
TFIMChainEnergy:
mean: -1.225789 variance: 0.007857 std_error: 0.000886

Epoch: 400
TFIMChainEnergy:
mean: -1.229849 variance: 0.005336 std_error: 0.000730

Epoch: 500
TFIMChainEnergy:
mean: -1.231192 variance: 0.004132 std_error: 0.000643

Epoch: 600
TFIMChainEnergy:
mean: -1.233709 variance: 0.003314 std_error: 0.000576

Epoch: 700
TFIMChainEnergy:
mean: -1.234858 variance: 0.002687 std_error: 0.000518

Epoch: 800
TFIMChainEnergy:
mean: -1.234655 variance: 0.002244 std_error: 0.000474

Epoch: 900
TFIMChainEnergy:
mean: -1.235693 variance: 0.001981 std_error: 0.000445

Epoch: 1000
TFIMChainEnergy:
mean: -1.235892 variance: 0.001680 std_error: 0.000410

The callbacks list returns a list of dictionaries. The mean, standard error and the variance at each epoch can be
accessed as follows:

[4]: # Note that the name of the observable class that the user makes
# must be what comes after callbacks[0].
energies = callbacks[0].TFIMChainEnergy.mean

# Alternatively, we can use the usual dictionary/list subscripting
# syntax, which is useful in the case where the observable's name
# contains special characters or spaces
errors = callbacks[0]["TFIMChainEnergy"].std_error
variance = callbacks[0]["TFIMChainEnergy"]["variance"]

A plot of the energy as a function of the training cycle is presented below.

[5]: epoch = np.arange(period, epochs + 1, period)

E0 = -1.2381

(continues on next page)
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plt.figure(figsize=(10, 5))
ax = plt.axes()
ax.plot(epoch, energies, color="red")
ax.set_xlim(period, epochs)
ax.axhline(E0, color="black")
ax.fill_between(epoch, energies - errors, energies + errors, alpha=0.2, color="black")
ax.set_xlabel("Epoch")
ax.set_ylabel("Energy")
ax.grid()
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CHAPTER

NINE

WAVEFUNCTION RBM

class qucumber.rbm.BinaryRBM(*args: Any, **kwargs: Any)
Bases: torch.nn.Module

effective_energy(v)
The effective energies of the given visible states.

ℰ(𝑣) = −
∑︁
𝑗

𝑏𝑗𝑣𝑗 −
∑︁
𝑖

log

⎡⎣1 + exp

⎛⎝𝑐𝑖 +
∑︁
𝑗

𝑊𝑖𝑗𝑣𝑗

⎞⎠⎤⎦
Parameters v (torch.Tensor) – The visible states.

Returns The effective energies of the given visible states.

Return type torch.Tensor

effective_energy_gradient(v, reduce=True)
The gradients of the effective energies for the given visible states.

Parameters

• v (torch.Tensor) – The visible states.

• reduce (bool) – If True, will sum over the gradients resulting from each visible state.
Otherwise will return a batch of gradient vectors.

Returns Will return a vector (or matrix if reduce=False and multiple visible states were given as
a matrix) containing the gradients for all parameters (computed on the given visible states v).

Return type torch.Tensor

gibbs_steps(k, initial_state, overwrite=False)
Performs k steps of Block Gibbs sampling. One step consists of sampling the hidden state ℎ from the
conditional distribution 𝑝(ℎ | 𝑣), and sampling the visible state 𝑣 from the conditional distribution 𝑝(𝑣 | ℎ).

Parameters

• k (int) – Number of Block Gibbs steps.

• initial_state (torch.Tensor) – The initial state of the Markov Chains.

• overwrite (bool) – Whether to overwrite the initial_state tensor. Exception: If ini-
tial_state is not on the same device as the RBM, it will NOT be overwritten.

Returns Returns the visible states after k steps of Block Gibbs sampling

Return type torch.Tensor

initialize_parameters(zero_weights=False)
Randomize the parameters of the RBM
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partition(space)
Compute the partition function of the RBM.

Parameters space (torch.Tensor) – A rank 2 tensor of the visible space.

Returns The value of the partition function evaluated at the current state of the RBM.

Return type torch.Tensor

prob_h_given_v(v, out=None)
Given a visible unit configuration, compute the probability vector of the hidden units being on.

Parameters

• h (torch.Tensor) – The hidden unit.

• out (torch.Tensor) – The output tensor to write to.

Returns The probability of hidden units being active given the visible state.

Return type torch.Tensor

prob_v_given_h(h, out=None)
Given a hidden unit configuration, compute the probability vector of the visible units being on.

Parameters

• h (torch.Tensor) – The hidden unit

• out (torch.Tensor) – The output tensor to write to.

Returns The probability of visible units being active given the hidden state.

Return type torch.Tensor

sample_h_given_v(v, out=None)
Sample/generate a hidden state given a visible state.

Parameters

• h (torch.Tensor) – The visible state.

• out (torch.Tensor) – The output tensor to write to.

Returns The sampled hidden state.

Return type torch.Tensor

sample_v_given_h(h, out=None)
Sample/generate a visible state given a hidden state.

Parameters

• h (torch.Tensor) – The hidden state.

• out (torch.Tensor) – The output tensor to write to.

Returns The sampled visible state.

Return type torch.Tensor
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CHAPTER

TEN

DENSITY MATRIX RBM

class qucumber.rbm.PurificationRBM(*args: Any, **kwargs: Any)
Bases: torch.nn.Module

An RBM with a hidden and “auxiliary” layer, each separately connected to the visible units

Parameters

• num_visible (int) – The number of visible units, i.e. the size of the system

• num_hidden (int) – The number of units in the hidden layer

• num_aux (int) – The number of units in the auxiliary purification layer

• zero_weights (bool) – Whether or not to initialize the weights to zero

• gpu (bool) – Whether to perform computations on the default gpu.

effective_energy(v, a=None)
Computes the equivalent of the “effective energy” for the RBM. If a is None, will analytically trace out the
auxiliary units.

Parameters

• v (torch.Tensor) – The current state of the visible units. Shape (b, n_v) or (n_v,).

• a (torch.Tensor or None) – The current state of the auxiliary units. Shape (b, n_a) or
(n_a,).

Returns The “effective energy” of the RBM. Shape (b,) or (1,).

Return type torch.Tensor

effective_energy_gradient(v, reduce=True)
The gradients of the effective energies for the given visible states.

Parameters

• v (torch.Tensor) – The visible states.

• reduce (bool) – If True, will sum over the gradients resulting from each visible state.
Otherwise will return a batch of gradient vectors.

Returns Will return a vector (or matrix if reduce=False and multiple visible states were given as
a matrix) containing the gradients for all parameters (computed on the given visible states v).

Return type torch.Tensor

gamma(v, vp, eta=1, expand=True)
Calculates elements of the Γ(𝜂) matrix, where 𝜂 = ±. If expand is True, will return a complex matrix
𝐴𝑖𝑗 = ⟨𝜎𝑖|Γ(𝜂)|𝜎′

𝑗⟩. Otherwise will return a complex vector 𝐴𝑖 = ⟨𝜎𝑖|Γ(𝜂)|𝜎′
𝑖⟩.
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Parameters

• v (torch.Tensor) – A batch of visible states, 𝜎.

• vp (torch.Tensor) – The other batch of visible states, 𝜎′.

• eta (int) – Determines which gamma matrix elements to compute.

• expand (bool) – Whether to return a matrix (True) or a vector (False). Ignored if both
inputs are vectors, in which case, a scalar is returned.

Returns The matrix element given by ⟨𝜎|Γ(𝜂)|𝜎′⟩

Return type torch.Tensor

gamma_grad(v, vp, eta=1, expand=False)

Calculates elements of the gradient of the Γ(𝜂) matrix, where 𝜂 = ±.

Parameters

• v (torch.Tensor) – A batch of visible states, 𝜎

• vp (torch.Tensor) – The other batch of visible states, 𝜎′

• eta (int) – Determines which gamma matrix elements to compute.

• expand (bool) – Whether to return a rank-3 tensor (True) or a matrix (False).

Returns The matrix element given by ⟨𝜎|∇𝜆Γ(𝜂)|𝜎′⟩

Return type torch.Tensor

gibbs_steps(k, initial_state, overwrite=False)
Perform k steps of Block Gibbs sampling. One step consists of sampling the hidden and auxiliary states
from the visible state, and then sampling the visible state from the hidden and auxiliary states

Parameters

• k (int) – The number of Block Gibbs steps

• initial_state (torch.Tensor) – The initial visible state

• overwrite (bool) – Whether to overwrite the initial_state tensor. Exception: If ini-
tial_state is not on the same device as the RBM, it will NOT be overwritten.

Returns Returns the visible states after k steps of Block Gibbs sampling

Return type torch.Tensor

initialize_parameters(zero_weights=False)
Initialize the parameters of the RBM

Parameters zero_weights (bool) – Whether or not to initialize the weights to zero

mixing_term(v)

Describes the extent of mixing in the system, 𝑉𝜃 = 1
2𝑈𝜃𝜎 + 𝑑𝜃

Parameters v (torch.Tensor) – The visible state of the system

Returns The term describing the mixing of the system

Return type torch.Tensor
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partition(space)
Computes the partition function

Parameters space (torch.Tensor) – The Hilbert space of the visible units

Returns The partition function

Return type torch.Tensor

prob_a_given_v(v, out=None)
Given a visible unit configuration, compute the probability vector of the auxiliary units being on

Parameters

• v (torch.Tensor) – The visible units

• out (torch.Tensor) – The output tensor to write to

Returns The probability of the auxiliary units being active given the visible state

Rtype torch.Tensor

prob_h_given_v(v, out=None)
Given a visible unit configuration, compute the probability vector of the hidden units being on

Parameters

• v (torch.Tensor) – The visible units

• out (torch.Tensor) – The output tensor to write to

Returns The probability of the hidden units being active given the visible state

Rtype torch.Tensor

prob_v_given_ha(h, a, out=None)
Given a hidden and auxiliary unit configuration, compute the probability vector of the hidden units being
on

Parameters

• h (torch.Tensor) – The hidden units

• a (torch.Tensor) – The auxiliary units

• out (torch.Tensor) – The output tensor to write to

Returns The probability of the visible units being active given the hidden and auxiliary states

Rtype torch.Tensor

sample_a_given_v(v, out=None)
Sample/generate an auxiliary state given a visible state

Parameters

• v (torch.Tensor) – The visible state

• out (torch.Tensor) – The output tensor to write to

Returns The sampled auxiliary state

Return type torch.Tensor

sample_h_given_v(v, out=None)
Sample/generate a hidden state given a visible state

Parameters

49

https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor


QuCumber Documentation, Release v1.3.2

• v (torch.Tensor) – The visible state

• out (torch.Tensor) – The output tensor to write to

Returns The sampled hidden state

Return type torch.Tensor

sample_v_given_ha(h, a, out=None)
Sample/generate a visible state given the hidden and auxiliary states

Parameters

• h (torch.Tensor) – The hidden state

• a (torch.Tensor) – The auxiliary state

• out (torch.Tensor) – The output tensor to write to

Returns The sampled visible state

Return type torch.Tensor
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CHAPTER

ELEVEN

QUANTUM STATES

11.1 Positive WaveFunction

class qucumber.nn_states.PositiveWaveFunction(num_visible, num_hidden=None, gpu=True,
module=None)

Bases: qucumber.nn_states.WaveFunctionBase

Class capable of learning wavefunctions with no phase.

Parameters

• num_visible (int) – The number of visible units, ie. the size of the system being learned.

• num_hidden (int) – The number of hidden units in the internal RBM. Defaults to the num-
ber of visible units.

• gpu (bool) – Whether to perform computations on the default GPU.

• module (qucumber.rbm.BinaryRBM) – An instance of a BinaryRBM module to use for
density estimation. Will be copied to the default GPU if gpu=True (if it isn’t already there).
If None, will initialize a BinaryRBM from scratch.

amplitude(v)
Compute the (unnormalized) amplitude of a given vector/matrix of visible states.

amplitude(𝜎) = |𝜓𝜆(𝜎)| = 𝑒−ℰ𝜆(𝜎)/2

Parameters v (torch.Tensor) – visible states 𝜎

Returns Matrix/vector containing the amplitudes of v

Return type torch.Tensor

static autoload(location, gpu=True)
Initializes a NeuralState from the parameters in the given location.

Parameters

• location (str or file) – The location to load the model parameters from.

• gpu (bool) – Whether the returned model should be on the GPU.

Returns A new NeuralState initialized from the given parameters. The returned NeuralState will
be of whichever type this function was called on. An error may be thrown if the loaded
parameters correspond to a different type of NeuralState than the caller.

compute_batch_gradients(k, samples_batch, neg_batch, *args, **kwargs)
Compute the gradients of a batch of the training data (samples_batch).
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Parameters

• k (int) – Number of contrastive divergence steps in training.

• samples_batch (torch.Tensor) – Batch of the input samples.

• neg_batch (torch.Tensor) – Batch of the input samples for computing the negative
phase.

• *args – Ignored.

• **kwargs – Ignored.

Returns A single-element list containing the gradients calculated with a Gibbs sampled negative
phase update

Return type list[torch.Tensor]

compute_exact_gradients(samples_batch, space, bases_batch=None)
Computes the gradients of the parameters, using exact sampling for the negative phase update instead of
Gibbs sampling

Parameters

• samples_batch (torch.Tensor) – The measurements

• space (torch.Tensor) – A rank 2 tensor of the entire visible space.

• bases_batch (numpy.ndarray) – The bases in which the measurements are made

Returns A two-element list containing the amplitude and phase RBM gradients calculated with
an exact negative phase update

Return type list[torch.Tensor]

compute_exact_grads(samples_batch, space, *args, **kwargs)
Computes the gradients of the parameters, using exact sampling for the negative phase update instead of
Gibbs sampling

Parameters

• samples_batch (torch.Tensor) – The measurements

• space (torch.Tensor) – A rank 2 tensor of the entire visible space.

• *args – Ignored.

• **kwargs – Ignored.

Returns A single-element list containing the gradients calculated with an exact negative phase
update

Return type list[torch.Tensor]

compute_normalization(space)
Alias for normalization

property device
The device that the model is on.

fit(data, epochs=100, pos_batch_size=100, neg_batch_size=None, k=1, lr=0.001, progbar=False,
starting_epoch=1, time=False, callbacks=None, optimizer=torch.optim.SGD, optimizer_args=None,
scheduler=None, scheduler_args=None, **kwargs)
Train the NeuralState.

Parameters
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• data (numpy.ndarray) – The training samples

• epochs (int) – The number of full training passes through the dataset. Technically, this
specifies the index of the last training epoch, which is relevant if starting_epoch is being
set.

• pos_batch_size (int) – The size of batches for the positive phase taken from the data.

• neg_batch_size (int) – The size of batches for the negative phase taken from the data.
Defaults to pos_batch_size.

• k (int) – The number of contrastive divergence steps.

• lr (float) – Learning rate

• input_bases (numpy.ndarray) – The measurement bases for each sample. Must be
provided if training a ComplexWaveFunction or DensityMatrix.

• progbar (bool or str) – Whether or not to display a progress bar. If “notebook” is
passed, will use a Jupyter notebook compatible progress bar.

• starting_epoch (int) – The epoch to start from. Useful if continuing training from a
previous state.

• callbacks (list[qucumber.callbacks.CallbackBase]) – Callbacks to run while
training.

• optimizer (torch.optim.Optimizer) – The constructor of a torch optimizer.

• scheduler – The constructor of a torch scheduler

• optimizer_args (dict) – Arguments to pass to the optimizer

• scheduler_args (dict) – Arguments to pass to the scheduler

• **kwargs – Ignored; exists for backwards compatibility.

generate_hilbert_space(size=None, device=None)
Generates Hilbert space of dimension 2size.

Parameters

• size (int) – The size of each element of the Hilbert space. Defaults to the number of
visible units.

• device – The device to create the Hilbert space matrix on. Defaults to the device this
model is on.

Returns A tensor with all the basis states of the Hilbert space.

Return type torch.Tensor

gradient(v, *args, **kwargs)
Compute the gradient of the effective energy for a batch of states.

∇𝜆ℰ𝜆(𝜎)

Parameters

• v (torch.Tensor) – visible states 𝜎

• *args – Ignored.

• **kwargs – Ignored.

Returns A two-element list containing the gradients of the effective energy. The second element
will always be zero.
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Return type list[torch.Tensor]

importance_sampling_denominator(v)
Compute the denominator of the weight of an arbitrary sample, with respect to the sample v.

In the case of a mixed state, this quantity is 𝜌(𝜎, 𝜎), while in the pure case it is 𝜓(𝜎′)

Parameters v (torch.Tensor) – A batch containing the samples 𝜎

Returns A complex tensor containing the denominator of the weights with respect to 𝜎

Return type torch.Tensor

importance_sampling_numerator(vp, v)
Compute the numerator of the weight of sample vp, with respect to the sample v.

In the case of a mixed state, this quantity is 𝜌(𝜎′, 𝜎), while in the pure case it is 𝜓(𝜎′)

Parameters

• vp (torch.Tensor) – A batch containing the samples 𝜎′

• v (torch.Tensor) – A batch containing the samples 𝜎

Returns A complex tensor containing the numerator of the weights of 𝜎′ with respect to 𝜎

Return type torch.Tensor

importance_sampling_weight(vp, v)
Compute the weight of sample vp, with respect to the sample v.

In the case of a mixed state, this ratio is:

𝜌(𝜎′, 𝜎)

𝜌(𝜎, 𝜎)

While in the pure case:

𝜓(𝜎′)

𝜓(𝜎)

Parameters

• vp (torch.Tensor) – A batch containing the samples 𝜎′

• v (torch.Tensor) – A batch containing the samples 𝜎

Returns A complex tensor containing the weights of 𝜎′ with respect to 𝜎

Return type torch.Tensor

load(location)
Loads the NeuralState parameters from the given location ignoring any metadata stored in the file. Over-
writes the NeuralState’s parameters.

Note: The NeuralState object on which this function is called must have the same parameter shapes as the
one who’s parameters are being loaded.

Parameters location (str or file) – The location to load the NeuralState parameters from.

property max_size
Maximum size of the Hilbert space for full enumeration
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property networks
A list of the names of the internal RBMs.

normalization(space)
Compute the normalization constant of the state. In the case of a pure state, this is the norm of the unnor-
malized wavefunction. In the case of a mixed state, this is the trace of the unnormalized density matrix.

𝑍𝜆 =
∑︁
𝜎

𝑝𝜆(𝜎)

Parameters space (torch.Tensor) – A rank 2 tensor of the entire visible space.

phase(v)
Compute the phase of a given vector/matrix of visible states.

In the case of a PositiveWaveFunction, the phase is just zero.

Parameters v (torch.Tensor) – visible states 𝜎

Returns Matrix/vector containing the phases of v

Return type torch.Tensor

positive_phase_gradients(samples_batch, *args, **kwargs)
Computes the positive phase of the gradients of the parameters.

Parameters

• samples_batch (torch.Tensor) – The measurements

• *args – Ignored.

• **kwargs – Ignored.

Returns A two-element list containing the gradients of the effective energy. The second element
will always be zero.

Return type list[torch.Tensor]

probability(v, Z=1.0)
Evaluates the probability of the given vector(s) of visible states. Assumes the visible states were measured
in the computational basis.

Parameters

• v (torch.Tensor) – The visible states.

• Z (float) – The partition function / normalization constant. Defaults to 1, producing
unnormalized probabilities.

Returns The probability of the given vector(s) of visible units.

Return type torch.Tensor

psi(v)
Compute the (unnormalized) wavefunction of a given vector/matrix of visible states.

𝜓𝜆(𝜎) = 𝑒−ℰ𝜆(𝜎)/2

Parameters v (torch.Tensor) – visible states 𝜎

Returns Complex object containing the value of the wavefunction for each visible state

Return type torch.Tensor

property rbm_am
The RBM to be used to learn the wavefunction amplitude.
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reinitialize_parameters()
Randomize the parameters of the internal RBMs.

sample(k, num_samples=1, initial_state=None, overwrite=False)
Performs k steps of Block Gibbs sampling. One step consists of sampling the hidden state ℎ from the
conditional distribution 𝑝𝜆(ℎ|𝑣), and sampling the visible state 𝑣 from the conditional distribution 𝑝𝜆(𝑣 |ℎ).

Parameters

• k (int) – Number of Block Gibbs steps.

• num_samples (int) – The number of samples to generate.

• initial_state (torch.Tensor) – The initial state of the Markov Chains. If given,
num_samples will be ignored.

• overwrite (bool) – Whether to overwrite the initial_state tensor, if it is provided.

save(location, metadata=None)
Saves the NeuralState parameters to the given location along with any given metadata.

Parameters

• location (str or file) – The location to save the data.

• metadata (dict) – Any extra metadata to store alongside the NeuralState parameters.

property stop_training
If True, will not train.

If this property is set to True during the training cycle, training will terminate once the current batch or
epoch ends (depending on when stop_training was set).

subspace_vector(num, size=None, device=None)
Generates a single vector from the Hilbert space of dimension 2size.

Parameters

• size (int) – The size of each element of the Hilbert space.

• num (int) – The specific vector to return from the Hilbert space. Since the Hilbert space
can be represented by the set of binary strings of length size, num is equivalent to the
decimal representation of the returned vector.

• device – The device to create the vector on. Defaults to the device this model is on.

Returns A state from the Hilbert space.

Return type torch.Tensor

11.2 Complex WaveFunction

class qucumber.nn_states.ComplexWaveFunction(num_visible, num_hidden=None, unitary_dict=None,
gpu=False, module=None)

Bases: qucumber.nn_states.WaveFunctionBase

Class capable of learning wavefunctions with a non-zero phase.

Parameters

• num_visible (int) – The number of visible units, ie. the size of the system being learned.

• num_hidden (int) – The number of hidden units in both internal RBMs. Defaults to the
number of visible units.

56 Chapter 11. Quantum States

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int


QuCumber Documentation, Release v1.3.2

• unitary_dict (dict[str, torch.Tensor]) – A dictionary mapping unitary names to
their matrix representations.

• gpu (bool) – Whether to perform computations on the default GPU.

• module (qucumber.rbm.BinaryRBM) – An instance of a BinaryRBM module to use for
density estimation; The given RBM object will be used to estimate the amplitude of the
wavefunction, while a copy will be used to estimate the phase of the wavefunction. Will be
copied to the default GPU if gpu=True (if it isn’t already there). If None, will initialize the
BinaryRBMs from scratch.

am_grads(v)
Computes the gradients of the amplitude RBM for given input states

Parameters v (torch.Tensor) – The input state, 𝜎

Returns The gradients of all amplitude RBM parameters

Return type torch.Tensor

amplitude(v)
Compute the (unnormalized) amplitude of a given vector/matrix of visible states.

amplitude(𝜎) = |𝜓𝜆𝜇(𝜎)| = 𝑒−ℰ𝜆(𝜎)/2

Parameters v (torch.Tensor) – visible states 𝜎.

Returns Vector containing the amplitudes of the given states.

Return type torch.Tensor

static autoload(location, gpu=False)
Initializes a NeuralState from the parameters in the given location.

Parameters

• location (str or file) – The location to load the model parameters from.

• gpu (bool) – Whether the returned model should be on the GPU.

Returns A new NeuralState initialized from the given parameters. The returned NeuralState will
be of whichever type this function was called on. An error may be thrown if the loaded
parameters correspond to a different type of NeuralState than the caller.

compute_batch_gradients(k, samples_batch, neg_batch, bases_batch=None)
Compute the gradients of a batch of the training data (samples_batch).

If measurements are taken in bases other than the reference basis, a list of bases (bases_batch) must also
be provided.

Parameters

• k (int) – Number of contrastive divergence steps in training.

• samples_batch (torch.Tensor) – Batch of the input samples.

• neg_batch (torch.Tensor) – Batch of the input samples for computing the negative
phase.

• bases_batch (numpy.ndarray) – Batch of the input bases corresponding to the samples
in samples_batch.

Returns A two-element list containing the amplitude and phase RBM gradients calculated with
a Gibbs sampled negative phase update

Return type list[torch.Tensor]
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compute_exact_gradients(samples_batch, space, bases_batch=None)
Computes the gradients of the parameters, using exact sampling for the negative phase update instead of
Gibbs sampling

Parameters

• samples_batch (torch.Tensor) – The measurements

• space (torch.Tensor) – A rank 2 tensor of the entire visible space.

• bases_batch (numpy.ndarray) – The bases in which the measurements are made

Returns A two-element list containing the amplitude and phase RBM gradients calculated with
an exact negative phase update

Return type list[torch.Tensor]

compute_normalization(space)
Alias for normalization

property device
The device that the model is on.

fit(data, epochs=100, pos_batch_size=100, neg_batch_size=None, k=1, lr=0.001, input_bases=None,
progbar=False, starting_epoch=1, time=False, callbacks=None, optimizer=torch.optim.SGD,
optimizer_args=None, scheduler=None, scheduler_args=None, **kwargs)
Train the NeuralState.

Parameters

• data (numpy.ndarray) – The training samples

• epochs (int) – The number of full training passes through the dataset. Technically, this
specifies the index of the last training epoch, which is relevant if starting_epoch is being
set.

• pos_batch_size (int) – The size of batches for the positive phase taken from the data.

• neg_batch_size (int) – The size of batches for the negative phase taken from the data.
Defaults to pos_batch_size.

• k (int) – The number of contrastive divergence steps.

• lr (float) – Learning rate

• input_bases (numpy.ndarray) – The measurement bases for each sample. Must be
provided if training a ComplexWaveFunction or DensityMatrix.

• progbar (bool or str) – Whether or not to display a progress bar. If “notebook” is
passed, will use a Jupyter notebook compatible progress bar.

• starting_epoch (int) – The epoch to start from. Useful if continuing training from a
previous state.

• callbacks (list[qucumber.callbacks.CallbackBase]) – Callbacks to run while
training.

• optimizer (torch.optim.Optimizer) – The constructor of a torch optimizer.

• scheduler – The constructor of a torch scheduler

• optimizer_args (dict) – Arguments to pass to the optimizer

• scheduler_args (dict) – Arguments to pass to the scheduler

• **kwargs – Ignored; exists for backwards compatibility.
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generate_hilbert_space(size=None, device=None)
Generates Hilbert space of dimension 2size.

Parameters

• size (int) – The size of each element of the Hilbert space. Defaults to the number of
visible units.

• device – The device to create the Hilbert space matrix on. Defaults to the device this
model is on.

Returns A tensor with all the basis states of the Hilbert space.

Return type torch.Tensor

gradient(samples, bases=None)
Compute the gradient of a batch of sample, measured in given bases.

Parameters

• sample (numpy.ndarray) – A batch of samples to compute the gradient of.

• basis (numpy.ndarray or list[str] or None) – A batch of bases.

Returns A list of 2 tensors containing the accumulated gradients of each of the internal RBMs.

Return type list[torch.Tensor]

importance_sampling_denominator(v)
Compute the denominator of the weight of an arbitrary sample, with respect to the sample v.

In the case of a mixed state, this quantity is 𝜌(𝜎, 𝜎), while in the pure case it is 𝜓(𝜎′)

Parameters v (torch.Tensor) – A batch containing the samples 𝜎

Returns A complex tensor containing the denominator of the weights with respect to 𝜎

Return type torch.Tensor

importance_sampling_numerator(vp, v)
Compute the numerator of the weight of sample vp, with respect to the sample v.

In the case of a mixed state, this quantity is 𝜌(𝜎′, 𝜎), while in the pure case it is 𝜓(𝜎′)

Parameters

• vp (torch.Tensor) – A batch containing the samples 𝜎′

• v (torch.Tensor) – A batch containing the samples 𝜎

Returns A complex tensor containing the numerator of the weights of 𝜎′ with respect to 𝜎

Return type torch.Tensor

importance_sampling_weight(vp, v)
Compute the weight of sample vp, with respect to the sample v.

In the case of a mixed state, this ratio is:

𝜌(𝜎′, 𝜎)

𝜌(𝜎, 𝜎)

While in the pure case:

𝜓(𝜎′)

𝜓(𝜎)

Parameters
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• vp (torch.Tensor) – A batch containing the samples 𝜎′

• v (torch.Tensor) – A batch containing the samples 𝜎

Returns A complex tensor containing the weights of 𝜎′ with respect to 𝜎

Return type torch.Tensor

load(location)
Loads the NeuralState parameters from the given location ignoring any metadata stored in the file. Over-
writes the NeuralState’s parameters.

Note: The NeuralState object on which this function is called must have the same parameter shapes as the
one who’s parameters are being loaded.

Parameters location (str or file) – The location to load the NeuralState parameters from.

property max_size
Maximum size of the Hilbert space for full enumeration

property networks
A list of the names of the internal RBMs.

normalization(space)
Compute the normalization constant of the state. In the case of a pure state, this is the norm of the unnor-
malized wavefunction. In the case of a mixed state, this is the trace of the unnormalized density matrix.

𝑍𝜆 =
∑︁
𝜎

𝑝𝜆(𝜎)

Parameters space (torch.Tensor) – A rank 2 tensor of the entire visible space.

ph_grads(v)
Computes the gradients of the phase RBM for given input states

Parameters v (torch.Tensor) – The input state, 𝜎

Returns The gradients of all phase RBM parameters

Return type torch.Tensor

phase(v)
Compute the phase of a given vector/matrix of visible states.

phase(𝜎) = −ℰ𝜇(𝜎)/2

Parameters v (torch.Tensor) – visible states 𝜎.

Returns Vector containing the phases of the given states.

Return type torch.Tensor

positive_phase_gradients(samples_batch, bases_batch=None)
Computes the positive phase of the gradients of the parameters.

Parameters

• samples_batch (torch.Tensor) – The measurements

• bases_batch (numpy.ndarray) – The bases in which the measurements are made

Returns A two-element list containing the amplitude and phase RBM gradients
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Return type list[torch.Tensor]

probability(v, Z=1.0)
Evaluates the probability of the given vector(s) of visible states. Assumes the visible states were measured
in the computational basis.

Parameters

• v (torch.Tensor) – The visible states.

• Z (float) – The partition function / normalization constant. Defaults to 1, producing
unnormalized probabilities.

Returns The probability of the given vector(s) of visible units.

Return type torch.Tensor

psi(v)
Compute the (unnormalized) wavefunction of a given vector/matrix of visible states.

𝜓𝜆𝜇(𝜎) = 𝑒−[ℰ𝜆(𝜎)+𝑖ℰ𝜇(𝜎)]/2

Parameters v (torch.Tensor) – visible states 𝜎

Returns Complex object containing the value of the wavefunction for each visible state

Return type torch.Tensor

property rbm_am
The RBM to be used to learn the wavefunction amplitude.

property rbm_ph
RBM used to learn the wavefunction phase.

reinitialize_parameters()
Randomize the parameters of the internal RBMs.

rotated_gradient(basis, sample)
Computes the gradients rotated into the measurement basis

Parameters

• basis (numpy.ndarray) – The bases in which the measurement is made

• sample (torch.Tensor) – The measurement (either 0 or 1)

Returns A list of two tensors, representing the rotated gradients of the amplitude and phase
RBMS

Return type list[torch.Tensor, torch.Tensor]

sample(k, num_samples=1, initial_state=None, overwrite=False)
Performs k steps of Block Gibbs sampling. One step consists of sampling the hidden state ℎ from the
conditional distribution 𝑝𝜆(ℎ|𝑣), and sampling the visible state 𝑣 from the conditional distribution 𝑝𝜆(𝑣 |ℎ).

Parameters

• k (int) – Number of Block Gibbs steps.

• num_samples (int) – The number of samples to generate.

• initial_state (torch.Tensor) – The initial state of the Markov Chains. If given,
num_samples will be ignored.

• overwrite (bool) – Whether to overwrite the initial_state tensor, if it is provided.
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save(location, metadata=None)
Saves the NeuralState parameters to the given location along with any given metadata.

Parameters

• location (str or file) – The location to save the data.

• metadata (dict) – Any extra metadata to store alongside the NeuralState parameters.

property stop_training
If True, will not train.

If this property is set to True during the training cycle, training will terminate once the current batch or
epoch ends (depending on when stop_training was set).

subspace_vector(num, size=None, device=None)
Generates a single vector from the Hilbert space of dimension 2size.

Parameters

• size (int) – The size of each element of the Hilbert space.

• num (int) – The specific vector to return from the Hilbert space. Since the Hilbert space
can be represented by the set of binary strings of length size, num is equivalent to the
decimal representation of the returned vector.

• device – The device to create the vector on. Defaults to the device this model is on.

Returns A state from the Hilbert space.

Return type torch.Tensor

11.3 Density Matrix

class qucumber.nn_states.DensityMatrix(num_visible, num_hidden=None, num_aux=None,
unitary_dict=None, gpu=False, module=None)

Bases: qucumber.nn_states.NeuralStateBase

Parameters

• num_visible (int) – The number of visible units, i.e. the size of the system

• num_hidden (int) – The number of units in the hidden layer

• num_aux (int) – The number of units in the purification layer

• unitary_dict (dict[str, torch.Tensor]) – A dictionary associating bases with their
unitary rotations

• gpu (bool) – Whether to perform computations on the default gpu.

am_grads(v)
Computes the gradients of the amplitude RBM for given input states

Parameters v (torch.Tensor) – The first input state, 𝜎

Returns The gradients of all amplitude RBM parameters

Return type torch.Tensor

static autoload(location, gpu=False)
Initializes a NeuralState from the parameters in the given location.

Parameters
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• location (str or file) – The location to load the model parameters from.

• gpu (bool) – Whether the returned model should be on the GPU.

Returns A new NeuralState initialized from the given parameters. The returned NeuralState will
be of whichever type this function was called on. An error may be thrown if the loaded
parameters correspond to a different type of NeuralState than the caller.

compute_batch_gradients(k, samples_batch, neg_batch, bases_batch=None)
Compute the gradients of a batch of the training data (samples_batch).

If measurements are taken in bases other than the reference basis, a list of bases (bases_batch) must also
be provided.

Parameters

• k (int) – Number of contrastive divergence steps in training.

• samples_batch (torch.Tensor) – Batch of the input samples.

• neg_batch (torch.Tensor) – Batch of the input samples for computing the negative
phase.

• bases_batch (numpy.ndarray) – Batch of the input bases corresponding to the samples
in samples_batch.

Returns A two-element list containing the amplitude and phase RBM gradients calculated with
a Gibbs sampled negative phase update

Return type list[torch.Tensor]

compute_exact_gradients(samples_batch, space, bases_batch=None)
Computes the gradients of the parameters, using exact sampling for the negative phase update instead of
Gibbs sampling

Parameters

• samples_batch (torch.Tensor) – The measurements

• space (torch.Tensor) – A rank 2 tensor of the entire visible space.

• bases_batch (numpy.ndarray) – The bases in which the measurements are made

Returns A two-element list containing the amplitude and phase RBM gradients calculated with
an exact negative phase update

Return type list[torch.Tensor]

compute_normalization(space)
Alias for normalization

property device
The device that the model is on.

fit(data, epochs=100, pos_batch_size=100, neg_batch_size=None, k=1, lr=1, input_bases=None,
progbar=False, starting_epoch=1, time=False, callbacks=None, optimizer=torch.optim.SGD,
optimizer_args=None, scheduler=None, scheduler_args=None, **kwargs)
Train the NeuralState.

Parameters

• data (numpy.ndarray) – The training samples

• epochs (int) – The number of full training passes through the dataset. Technically, this
specifies the index of the last training epoch, which is relevant if starting_epoch is being
set.
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• pos_batch_size (int) – The size of batches for the positive phase taken from the data.

• neg_batch_size (int) – The size of batches for the negative phase taken from the data.
Defaults to pos_batch_size.

• k (int) – The number of contrastive divergence steps.

• lr (float) – Learning rate

• input_bases (numpy.ndarray) – The measurement bases for each sample. Must be
provided if training a ComplexWaveFunction or DensityMatrix.

• progbar (bool or str) – Whether or not to display a progress bar. If “notebook” is
passed, will use a Jupyter notebook compatible progress bar.

• starting_epoch (int) – The epoch to start from. Useful if continuing training from a
previous state.

• callbacks (list[qucumber.callbacks.CallbackBase]) – Callbacks to run while
training.

• optimizer (torch.optim.Optimizer) – The constructor of a torch optimizer.

• scheduler – The constructor of a torch scheduler

• optimizer_args (dict) – Arguments to pass to the optimizer

• scheduler_args (dict) – Arguments to pass to the scheduler

• **kwargs – Ignored; exists for backwards compatibility.

generate_hilbert_space(size=None, device=None)
Generates Hilbert space of dimension 2size.

Parameters

• size (int) – The size of each element of the Hilbert space. Defaults to the number of
visible units.

• device – The device to create the Hilbert space matrix on. Defaults to the device this
model is on.

Returns A tensor with all the basis states of the Hilbert space.

Return type torch.Tensor

gradient(samples, bases=None)
Compute the gradient of a batch of sample, measured in given bases.

Parameters

• sample (numpy.ndarray) – A batch of samples to compute the gradient of.

• basis (numpy.ndarray or list[str] or None) – A batch of bases.

Returns A list of 2 tensors containing the accumulated gradients of each of the internal RBMs.

Return type list[torch.Tensor]

importance_sampling_denominator(v)
Compute the denominator of the weight of an arbitrary sample, with respect to the sample v.

In the case of a mixed state, this quantity is 𝜌(𝜎, 𝜎), while in the pure case it is 𝜓(𝜎′)

Parameters v (torch.Tensor) – A batch containing the samples 𝜎

Returns A complex tensor containing the denominator of the weights with respect to 𝜎
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Return type torch.Tensor

importance_sampling_numerator(vp, v)
Compute the numerator of the weight of sample vp, with respect to the sample v.

In the case of a mixed state, this quantity is 𝜌(𝜎′, 𝜎), while in the pure case it is 𝜓(𝜎′)

Parameters

• vp (torch.Tensor) – A batch containing the samples 𝜎′

• v (torch.Tensor) – A batch containing the samples 𝜎

Returns A complex tensor containing the numerator of the weights of 𝜎′ with respect to 𝜎

Return type torch.Tensor

importance_sampling_weight(vp, v)
Compute the weight of sample vp, with respect to the sample v.

In the case of a mixed state, this ratio is:

𝜌(𝜎′, 𝜎)

𝜌(𝜎, 𝜎)

While in the pure case:

𝜓(𝜎′)

𝜓(𝜎)

Parameters

• vp (torch.Tensor) – A batch containing the samples 𝜎′

• v (torch.Tensor) – A batch containing the samples 𝜎

Returns A complex tensor containing the weights of 𝜎′ with respect to 𝜎

Return type torch.Tensor

load(location)
Loads the NeuralState parameters from the given location ignoring any metadata stored in the file. Over-
writes the NeuralState’s parameters.

Note: The NeuralState object on which this function is called must have the same parameter shapes as the
one who’s parameters are being loaded.

Parameters location (str or file) – The location to load the NeuralState parameters from.

property max_size
Maximum size of the Hilbert space for full enumeration

property networks
A list of the names of the internal RBMs.

normalization(space)
Compute the normalization constant of the state. In the case of a pure state, this is the norm of the unnor-
malized wavefunction. In the case of a mixed state, this is the trace of the unnormalized density matrix.

𝑍𝜆 =
∑︁
𝜎

𝑝𝜆(𝜎)

Parameters space (torch.Tensor) – A rank 2 tensor of the entire visible space.
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ph_grads(v)
Computes the gradients of the phase RBM for given input states

Parameters v (torch.Tensor) – The first input state, 𝜎

Returns The gradients of all phase RBM parameters

Return type torch.Tensor

pi(v, vp, expand=True)
Calculates elements of the Π matrix. If expand is True, will return a complex matrix 𝐴𝑖𝑗 = ⟨𝜎𝑖|Π|𝜎′

𝑗⟩.
Otherwise will return a complex vector 𝐴𝑖 = ⟨𝜎𝑖|Π|𝜎′

𝑖⟩.

Parameters

• v (torch.Tensor) – A batch of visible states, 𝜎.

• vp (torch.Tensor) – The other batch of visible state, 𝜎′.

• expand (bool) – Whether to return a matrix (True) or a vector (False).

Returns The matrix elements given by ⟨𝜎|Π|𝜎′⟩

Return type torch.Tensor

pi_grad(v, vp, phase=False, expand=False)

Calculates the gradient of the Π matrix with respect to the amplitude RBM parameters for two input
states

Parameters

• v (torch.Tensor) – One of the visible states, 𝜎

• vp (torch.Tensor) – The other visible state, :math`sigma’`

• phase (bool) – Whether to compute the gradients for the phase RBM (True) or the ampli-
tude RBM (False)

Returns The matrix element of the gradient given by ⟨𝜎|∇𝜆Π|𝜎′⟩

Return type torch.Tensor

positive_phase_gradients(samples_batch, bases_batch=None)
Computes the positive phase of the gradients of the parameters.

Parameters

• samples_batch (torch.Tensor) – The measurements

• bases_batch (numpy.ndarray) – The bases in which the measurements are made

Returns A two-element list containing the amplitude and phase RBM gradients

Return type list[torch.Tensor]

probability(v, Z=1.0)
Evaluates the probability of the given vector(s) of visible states. Assumes the visible states were measured
in the computational basis.

Parameters

• v (torch.Tensor) – The visible states.

• Z (float) – The partition function / normalization constant. Defaults to 1, producing
unnormalized probabilities.
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Returns The probability of the given vector(s) of visible units.

Return type torch.Tensor

property rbm_am
The RBM to be used to learn the wavefunction amplitude.

property rbm_ph
RBM used to learn the wavefunction phase.

reinitialize_parameters()
Randomize the parameters of the internal RBMs.

rho(v, vp=None, expand=True)
Computes the matrix elements of the (unnormalized) density matrix. If expand is True, will return a com-
plex matrix 𝐴𝑖𝑗 = ⟨𝜎𝑖|̃︀𝜌|𝜎′

𝑗⟩. Otherwise will return a complex vector 𝐴𝑖 = ⟨𝜎𝑖|̃︀𝜌|𝜎′
𝑖⟩.

Parameters

• v (torch.Tensor) – One of the visible states, 𝜎.

• vp (torch.Tensor) – The other visible state, 𝜎′. If None, will be set to v.

• expand (bool) – Whether to return a matrix (True) or a vector (False).

Returns The elements of the current density matrix ⟨𝜎|̃︀𝜌|𝜎′⟩

Return type torch.Tensor

rotated_gradient(basis, sample)
Computes the gradients rotated into the measurement basis

Parameters

• basis (numpy.ndarray) – The bases in which the measurement is made

• sample (torch.Tensor) – The measurement (either 0 or 1)

Returns A list of two tensors, representing the rotated gradients of the amplitude and phase
RBMs

Return type list[torch.Tensor, torch.Tensor]

sample(k, num_samples=1, initial_state=None, overwrite=False)
Performs k steps of Block Gibbs sampling. One step consists of sampling the hidden state ℎ from the
conditional distribution 𝑝𝜆(ℎ|𝑣), and sampling the visible state 𝑣 from the conditional distribution 𝑝𝜆(𝑣 |ℎ).

Parameters

• k (int) – Number of Block Gibbs steps.

• num_samples (int) – The number of samples to generate.

• initial_state (torch.Tensor) – The initial state of the Markov Chains. If given,
num_samples will be ignored.

• overwrite (bool) – Whether to overwrite the initial_state tensor, if it is provided.

save(location, metadata=None)
Saves the NeuralState parameters to the given location along with any given metadata.

Parameters

• location (str or file) – The location to save the data.

• metadata (dict) – Any extra metadata to store alongside the NeuralState parameters.
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property stop_training
If True, will not train.

If this property is set to True during the training cycle, training will terminate once the current batch or
epoch ends (depending on when stop_training was set).

subspace_vector(num, size=None, device=None)
Generates a single vector from the Hilbert space of dimension 2size.

Parameters

• size (int) – The size of each element of the Hilbert space.

• num (int) – The specific vector to return from the Hilbert space. Since the Hilbert space
can be represented by the set of binary strings of length size, num is equivalent to the
decimal representation of the returned vector.

• device – The device to create the vector on. Defaults to the device this model is on.

Returns A state from the Hilbert space.

Return type torch.Tensor

11.4 Abstract WaveFunction

Note: This is an Abstract Base Class, it is not meant to be used directly. The following API reference is mostly for
developers.

class qucumber.nn_states.WaveFunctionBase
Bases: qucumber.nn_states.NeuralStateBase

Abstract Base Class for WaveFunctions.

amplitude(v)
Compute the (unnormalized) amplitude of a given vector/matrix of visible states.

amplitude(𝜎) = |𝜓(𝜎)|

Parameters v (torch.Tensor) – visible states 𝜎

Returns Matrix/vector containing the amplitudes of v

Return type torch.Tensor

importance_sampling_denominator(v)
Compute the denominator of the weight of an arbitrary sample, with respect to the sample v.

In the case of a mixed state, this quantity is 𝜌(𝜎, 𝜎), while in the pure case it is 𝜓(𝜎′)

Parameters v (torch.Tensor) – A batch containing the samples 𝜎

Returns A complex tensor containing the denominator of the weights with respect to 𝜎

Return type torch.Tensor

importance_sampling_numerator(vp, v)
Compute the numerator of the weight of sample vp, with respect to the sample v.

In the case of a mixed state, this quantity is 𝜌(𝜎′, 𝜎), while in the pure case it is 𝜓(𝜎′)

Parameters
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• vp (torch.Tensor) – A batch containing the samples 𝜎′

• v (torch.Tensor) – A batch containing the samples 𝜎

Returns A complex tensor containing the numerator of the weights of 𝜎′ with respect to 𝜎

Return type torch.Tensor

abstract phase(v)
Compute the phase of a given vector/matrix of visible states.

phase(𝜎)

Parameters v (torch.Tensor) – visible states 𝜎

Returns Matrix/vector containing the phases of v

Return type torch.Tensor

psi(v)
Compute the (unnormalized) wavefunction of a given vector/matrix of visible states.

𝜓(𝜎)

Parameters v (torch.Tensor) – visible states 𝜎

Returns Complex object containing the value of the wavefunction for each visible state

Return type torch.Tensor

reinitialize_parameters()
Randomize the parameters of the internal RBMs.

11.5 Abstract NeuralState

Note: This is an Abstract Base Class, it is not meant to be used directly. The following API reference is mostly for
developers.

class qucumber.nn_states.NeuralStateBase
Bases: abc.ABC

Abstract Base Class for Neural Network Quantum States.

abstract static autoload(location, gpu=False)
Initializes a NeuralState from the parameters in the given location.

Parameters

• location (str or file) – The location to load the model parameters from.

• gpu (bool) – Whether the returned model should be on the GPU.

Returns A new NeuralState initialized from the given parameters. The returned NeuralState will
be of whichever type this function was called on. An error may be thrown if the loaded
parameters correspond to a different type of NeuralState than the caller.

compute_batch_gradients(k, samples_batch, neg_batch, bases_batch=None)
Compute the gradients of a batch of the training data (samples_batch).

If measurements are taken in bases other than the reference basis, a list of bases (bases_batch) must also
be provided.
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Parameters

• k (int) – Number of contrastive divergence steps in training.

• samples_batch (torch.Tensor) – Batch of the input samples.

• neg_batch (torch.Tensor) – Batch of the input samples for computing the negative
phase.

• bases_batch (numpy.ndarray) – Batch of the input bases corresponding to the samples
in samples_batch.

Returns A two-element list containing the amplitude and phase RBM gradients calculated with
a Gibbs sampled negative phase update

Return type list[torch.Tensor]

compute_exact_gradients(samples_batch, space, bases_batch=None)
Computes the gradients of the parameters, using exact sampling for the negative phase update instead of
Gibbs sampling

Parameters

• samples_batch (torch.Tensor) – The measurements

• space (torch.Tensor) – A rank 2 tensor of the entire visible space.

• bases_batch (numpy.ndarray) – The bases in which the measurements are made

Returns A two-element list containing the amplitude and phase RBM gradients calculated with
an exact negative phase update

Return type list[torch.Tensor]

compute_normalization(space)
Alias for normalization

abstract property device
The device that the model is on.

fit(data, epochs=100, pos_batch_size=100, neg_batch_size=None, k=1, lr=0.001, input_bases=None,
progbar=False, starting_epoch=1, time=False, callbacks=None, optimizer=torch.optim.SGD,
optimizer_args=None, scheduler=None, scheduler_args=None, **kwargs)
Train the NeuralState.

Parameters

• data (numpy.ndarray) – The training samples

• epochs (int) – The number of full training passes through the dataset. Technically, this
specifies the index of the last training epoch, which is relevant if starting_epoch is being
set.

• pos_batch_size (int) – The size of batches for the positive phase taken from the data.

• neg_batch_size (int) – The size of batches for the negative phase taken from the data.
Defaults to pos_batch_size.

• k (int) – The number of contrastive divergence steps.

• lr (float) – Learning rate

• input_bases (numpy.ndarray) – The measurement bases for each sample. Must be
provided if training a ComplexWaveFunction or DensityMatrix.
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• progbar (bool or str) – Whether or not to display a progress bar. If “notebook” is
passed, will use a Jupyter notebook compatible progress bar.

• starting_epoch (int) – The epoch to start from. Useful if continuing training from a
previous state.

• callbacks (list[qucumber.callbacks.CallbackBase]) – Callbacks to run while
training.

• optimizer (torch.optim.Optimizer) – The constructor of a torch optimizer.

• scheduler – The constructor of a torch scheduler

• optimizer_args (dict) – Arguments to pass to the optimizer

• scheduler_args (dict) – Arguments to pass to the scheduler

• **kwargs – Ignored; exists for backwards compatibility.

generate_hilbert_space(size=None, device=None)
Generates Hilbert space of dimension 2size.

Parameters

• size (int) – The size of each element of the Hilbert space. Defaults to the number of
visible units.

• device – The device to create the Hilbert space matrix on. Defaults to the device this
model is on.

Returns A tensor with all the basis states of the Hilbert space.

Return type torch.Tensor

gradient(samples, bases=None)
Compute the gradient of a batch of sample, measured in given bases.

Parameters

• sample (numpy.ndarray) – A batch of samples to compute the gradient of.

• basis (numpy.ndarray or list[str] or None) – A batch of bases.

Returns A list of 2 tensors containing the accumulated gradients of each of the internal RBMs.

Return type list[torch.Tensor]

abstract importance_sampling_denominator(v)
Compute the denominator of the weight of an arbitrary sample, with respect to the sample v.

In the case of a mixed state, this quantity is 𝜌(𝜎, 𝜎), while in the pure case it is 𝜓(𝜎′)

Parameters v (torch.Tensor) – A batch containing the samples 𝜎

Returns A complex tensor containing the denominator of the weights with respect to 𝜎

Return type torch.Tensor

abstract importance_sampling_numerator(vp, v)
Compute the numerator of the weight of sample vp, with respect to the sample v.

In the case of a mixed state, this quantity is 𝜌(𝜎′, 𝜎), while in the pure case it is 𝜓(𝜎′)

Parameters

• vp (torch.Tensor) – A batch containing the samples 𝜎′

• v (torch.Tensor) – A batch containing the samples 𝜎
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Returns A complex tensor containing the numerator of the weights of 𝜎′ with respect to 𝜎

Return type torch.Tensor

importance_sampling_weight(vp, v)
Compute the weight of sample vp, with respect to the sample v.

In the case of a mixed state, this ratio is:

𝜌(𝜎′, 𝜎)

𝜌(𝜎, 𝜎)

While in the pure case:

𝜓(𝜎′)

𝜓(𝜎)

Parameters

• vp (torch.Tensor) – A batch containing the samples 𝜎′

• v (torch.Tensor) – A batch containing the samples 𝜎

Returns A complex tensor containing the weights of 𝜎′ with respect to 𝜎

Return type torch.Tensor

load(location)
Loads the NeuralState parameters from the given location ignoring any metadata stored in the file. Over-
writes the NeuralState’s parameters.

Note: The NeuralState object on which this function is called must have the same parameter shapes as the
one who’s parameters are being loaded.

Parameters location (str or file) – The location to load the NeuralState parameters from.

property max_size
Maximum size of the Hilbert space for full enumeration

abstract property networks
A list of the names of the internal RBMs.

normalization(space)
Compute the normalization constant of the state. In the case of a pure state, this is the norm of the unnor-
malized wavefunction. In the case of a mixed state, this is the trace of the unnormalized density matrix.

𝑍𝜆 =
∑︁
𝜎

𝑝𝜆(𝜎)

Parameters space (torch.Tensor) – A rank 2 tensor of the entire visible space.

positive_phase_gradients(samples_batch, bases_batch=None)
Computes the positive phase of the gradients of the parameters.

Parameters

• samples_batch (torch.Tensor) – The measurements

• bases_batch (numpy.ndarray) – The bases in which the measurements are made

Returns A two-element list containing the amplitude and phase RBM gradients
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Return type list[torch.Tensor]

probability(v, Z=1.0)
Evaluates the probability of the given vector(s) of visible states. Assumes the visible states were measured
in the computational basis.

Parameters

• v (torch.Tensor) – The visible states.

• Z (float) – The partition function / normalization constant. Defaults to 1, producing
unnormalized probabilities.

Returns The probability of the given vector(s) of visible units.

Return type torch.Tensor

abstract property rbm_am
The RBM to be used to learn the wavefunction amplitude.

reinitialize_parameters()
Randomize the parameters of the internal RBMs.

sample(k, num_samples=1, initial_state=None, overwrite=False)
Performs k steps of Block Gibbs sampling. One step consists of sampling the hidden state ℎ from the
conditional distribution 𝑝𝜆(ℎ|𝑣), and sampling the visible state 𝑣 from the conditional distribution 𝑝𝜆(𝑣 |ℎ).

Parameters

• k (int) – Number of Block Gibbs steps.

• num_samples (int) – The number of samples to generate.

• initial_state (torch.Tensor) – The initial state of the Markov Chains. If given,
num_samples will be ignored.

• overwrite (bool) – Whether to overwrite the initial_state tensor, if it is provided.

save(location, metadata=None)
Saves the NeuralState parameters to the given location along with any given metadata.

Parameters

• location (str or file) – The location to save the data.

• metadata (dict) – Any extra metadata to store alongside the NeuralState parameters.

property stop_training
If True, will not train.

If this property is set to True during the training cycle, training will terminate once the current batch or
epoch ends (depending on when stop_training was set).

subspace_vector(num, size=None, device=None)
Generates a single vector from the Hilbert space of dimension 2size.

Parameters

• size (int) – The size of each element of the Hilbert space.

• num (int) – The specific vector to return from the Hilbert space. Since the Hilbert space
can be represented by the set of binary strings of length size, num is equivalent to the
decimal representation of the returned vector.

• device – The device to create the vector on. Defaults to the device this model is on.

Returns A state from the Hilbert space.
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Return type torch.Tensor
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CHAPTER

TWELVE

CALLBACKS

12.1 Base Callback

class qucumber.callbacks.CallbackBase
Base class for callbacks.

on_batch_end(nn_state, epoch, batch)
Called at the end of each batch.

Parameters

• nn_state (qucumber.nn_states.WaveFunctionBase) – The WaveFunction being
trained.

• epoch (int) – The current epoch.

• batch (int) – The current batch index.

on_batch_start(nn_state, epoch, batch)
Called at the start of each batch.

Parameters

• nn_state (qucumber.nn_states.WaveFunctionBase) – The WaveFunction being
trained.

• epoch (int) – The current epoch.

• batch (int) – The current batch index.

on_epoch_end(nn_state, epoch)
Called at the end of each epoch.

Parameters

• nn_state (qucumber.nn_states.WaveFunctionBase) – The WaveFunction being
trained.

• epoch (int) – The current epoch.

on_epoch_start(nn_state, epoch)
Called at the start of each epoch.

Parameters

• nn_state (qucumber.nn_states.WaveFunctionBase) – The WaveFunction being
trained.

• epoch (int) – The current epoch.
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on_train_end(nn_state)
Called at the end of the training cycle.

Parameters nn_state (qucumber.nn_states.WaveFunctionBase) – The WaveFunction
being trained.

on_train_start(nn_state)
Called at the start of the training cycle.

Parameters nn_state (qucumber.nn_states.WaveFunctionBase) – The WaveFunction
being trained.

12.2 LambdaCallback

class qucumber.callbacks.LambdaCallback(on_train_start=None, on_train_end=None,
on_epoch_start=None, on_epoch_end=None,
on_batch_start=None, on_batch_end=None)

Class for creating simple callbacks.

This callback is constructed using the passed functions that will be called at the appropriate time.

Parameters

• on_train_start (callable or None) – A function to be called at the start of the training
cycle. Must follow the same signature as CallbackBase.on_train_start.

• on_train_end (callable or None) – A function to be called at the end of the training
cycle. Must follow the same signature as CallbackBase.on_train_end .

• on_epoch_start (callable or None) – A function to be called at the start of every
epoch. Must follow the same signature as CallbackBase.on_epoch_start.

• on_epoch_end (callable or None) – A function to be called at the end of every epoch.
Must follow the same signature as CallbackBase.on_epoch_end .

• on_batch_start (callable or None) – A function to be called at the start of every batch.
Must follow the same signature as CallbackBase.on_batch_start.

• on_batch_end (callable or None) – A function to be called at the end of every batch.
Must follow the same signature as CallbackBase.on_batch_end .

12.3 ModelSaver

class qucumber.callbacks.ModelSaver(period, folder_path, file_name, save_initial=True, metadata=None,
metadata_only=False)

Callback which allows model parameters (along with some metadata) to be saved to disk at regular intervals.

This callback is called at the end of each epoch. If save_initial is True, will also be called at the start of the
training cycle.

Parameters

• period (int) – Frequency of model saving (in epochs).

• folder_path (str) – The directory in which to save the files

• file_name (str) – The name of the output files. Should be a format string with one blank,
which will be filled with either the epoch number or the word “initial”.
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• save_initial (bool) – Whether to save the initial parameters (and metadata).

• metadata (callable or dict or None) – The metadata to save to disk with the model
parameters Can be either a function or a dictionary. In the case of a function, it must take 2
arguments the RBM being trained, and the current epoch number, and then return a dictionary
containing the metadata to be saved.

• metadata_only (bool) – Whether to save only the metadata to disk.

12.4 Logger

class qucumber.callbacks.Logger(period, logger_fn=<built-in function print>, msg_gen=None,
**msg_gen_kwargs)

Callback which logs output at regular intervals.

This callback is called at the end of each epoch.

Parameters

• period (int) – Logging frequency (in epochs).

• logger_fn (callable) – The function used for logging. Must take 1 string as an argument.
Defaults to the standard print function.

• msg_gen (callable) – A callable which generates the string to be logged. Must take 2
positional arguments: the RBM being trained and the current epoch. It must also be able to
take some keyword arguments.

• **kwargs – Keyword arguments which will be passed to msg_gen.

12.5 EarlyStopping

class qucumber.callbacks.EarlyStopping(period, tolerance, patience, evaluator_callback, quantity_name,
criterion='relative')

Stop training once the model stops improving.

There are three different stopping criteria available:

relative, which computes the relative change between the two model evaluation steps:⃒⃒⃒⃒
𝑀𝑡−𝑝 −𝑀𝑡

𝑀𝑡−𝑝

⃒⃒⃒⃒
< 𝜖

absolute computes the absolute change:

|𝑀𝑡−𝑝 −𝑀𝑡| < 𝜖

variance computes the absolute change, but scales the change by the standard deviation of the quantity of interest,
such that the tolerance, epsilon can now be interpreted as the “number of standard deviations”:⃒⃒⃒⃒

𝑀𝑡−𝑝 −𝑀𝑡

𝜎𝑡−𝑝

⃒⃒⃒⃒
< 𝜖

where 𝑀𝑡 is the metric value at the current evaluation (time 𝑡), 𝑝 is the “patience” parameter, 𝜎𝑡 is the standard
deviation of the metric, and 𝜖 is the tolerance.

This callback is called at the end of each epoch.
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Parameters

• period (int) – Frequency with which the callback checks whether training has converged
(in epochs).

• tolerance (float) – The maximum relative change required to consider training as having
converged.

• patience (int) – How many intervals to wait before claiming the training has converged.

• evaluator_callback (MetricEvaluator or ObservableEvaluator) – An instance of
MetricEvaluator or ObservableEvaluator which computes the metric that we want to
check for convergence.

• quantity_name (str) – The name of the metric/observable stored in evaluator_callback.

• criterion (str) – The stopping criterion to use. Must be one of the following: relative,
absolute, variance.

12.6 VarianceBasedEarlyStopping

class qucumber.callbacks.VarianceBasedEarlyStopping(period, tolerance, patience, evaluator_callback,
quantity_name, variance_name=None)

Deprecated since version 1.2: Use EarlyStopping instead.

Stop training once the model stops improving. This is a variation on the EarlyStopping class which takes the
variance of the metric into account.

The specific criterion for stopping is: ⃒⃒⃒⃒
𝑀𝑡−𝑝 −𝑀𝑡

𝜎𝑡−𝑝

⃒⃒⃒⃒
< 𝜅

where 𝑀𝑡 is the metric value at the current evaluation (time 𝑡), 𝑝 is the “patience” parameter, 𝜎𝑡 is the standard
deviation of the metric, and 𝜅 is the tolerance.

This callback is called at the end of each epoch.

Parameters

• period (int) – Frequency with which the callback checks whether training has converged
(in epochs).

• tolerance (float) – The maximum (standardized) change required to consider training as
having converged.

• patience (int) – How many intervals to wait before claiming the training has converged.

• evaluator_callback (MetricEvaluator or ObservableEvaluator) – An instance of
MetricEvaluator or ObservableEvaluator which computes the metric/observable that
we want to check for convergence.

• quantity_name (str) – The name of the metric/observable stored in evaluator_callback.

• variance_name (str) – The name of the variance stored in evaluator_callback. Ignored,
exists for backward compatibility.
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12.7 MetricEvaluator

class qucumber.callbacks.MetricEvaluator(period, metrics, verbose=False, log=None, **metric_kwargs)
Evaluate and hold on to the results of the given metric(s).

This callback is called at the end of each epoch.

Note: Since callbacks are given to fit as a list, they will be called in a deterministic order. It is therefore recom-
mended that instances of MetricEvaluator be among the first callbacks in the list passed to fit, as one would
often use it in conjunction with other callbacks like EarlyStopping which may depend on MetricEvaluator
having been called.

Parameters

• period (int) – Frequency with which the callback evaluates the given metric(s).

• metrics (dict(str, callable)) – A dictionary of callables where the keys are the
names of the metrics and the callables take the NeuralState being trained as their positional
argument, along with some keyword arguments. The metrics are evaluated and put into an
internal dictionary structure resembling the structure of metrics.

• verbose (bool) – Whether to print metrics to stdout.

• log (str) – A filepath to log metric values to in CSV format.

• **metric_kwargs – Keyword arguments to be passed to metrics.

__getattr__(metric)
Return an array of all recorded values of the given metric.

Parameters metric (str) – The metric to retrieve.

Returns The past values of the metric.

Return type numpy.ndarray

__getitem__(metric)
Alias for __getattr__ to enable subscripting.

__len__()
Return the number of timesteps that metrics have been evaluated for.

Return type int

clear_history()
Delete all metric values the instance is currently storing.

property epochs
Return a list of all epochs that have been recorded.

Return type numpy.ndarray

get_value(name, index=None)
Retrieve the value of the desired metric from the given timestep.

Parameters

• name (str) – The name of the metric to retrieve.

• index (int or None) – The index/timestep from which to retrieve the metric. Negative
indices are supported. If None, will just get the most recent value.
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property names
The names of the tracked metrics.

Return type list[str]

12.8 ObservableEvaluator

class qucumber.callbacks.ObservableEvaluator(period, observables, verbose=False, log=None,
**sampling_kwargs)

Evaluate and hold on to the results of the given observable(s).

This callback is called at the end of each epoch.

Note: Since callback are given to fit as a list, they will be called in a deterministic order. It is there-
fore recommended that instances of ObservableEvaluator be among the first callbacks in the list passed to
fit, as one would often use it in conjunction with other callbacks like EarlyStopping which may depend on
ObservableEvaluator having been called.

Parameters

• period (int) – Frequency with which the callback evaluates the given observables(s).

• observables (list(qucumber.observables.ObservableBase)) – A list of Observ-
ables. Observable statistics are evaluated by sampling the NeuralState. Note that observables
that have the same name will conflict, and precedence will be given to the one which appears
later in the list.

• verbose (bool) – Whether to print metrics to stdout.

• log (str) – A filepath to log metric values to in CSV format.

• **sampling_kwargs – Keyword arguments to be passed to Observable.statistics. Ex.
num_samples, num_chains, burn_in, steps.

__getattr__(observable)
Return an ObservableStatistics containing recorded statistics of the given observable.

Parameters observable (str) – The observable to retrieve.

Returns The past values of the observable.

Return type ObservableStatistics

__getitem__(observable)
Alias for __getattr__ to enable subscripting.

__len__()
Return the number of timesteps that observables have been evaluated for.

Return type int

clear_history()
Delete all statistics the instance is currently storing.

property epochs
Return a list of all epochs that have been recorded.

Return type numpy.ndarray
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get_value(name, index=None)
Retrieve the statistics of the desired observable from the given timestep.

Parameters

• name (str) – The name of the observable to retrieve.

• index (int or None) – The index/timestep from which to retrieve the observable. Neg-
ative indices are supported. If None, will just get the most recent value.

Return type dict(str, float)

property names
The names of the tracked observables.

Return type list[str]

12.9 LivePlotting

class qucumber.callbacks.LivePlotting(period, evaluator_callback, quantity_name, error_name=None,
total_epochs=None, smooth=True)

Plots metrics/observables.

This callback is called at the end of each epoch.

Parameters

• period (int) – Frequency with which the callback updates the plots (in epochs).

• evaluator_callback (MetricEvaluator or ObservableEvaluator) – An instance of
MetricEvaluator or ObservableEvaluator which computes the metric/observable that
we want to plot.

• quantity_name (str) – The name of the metric/observable stored in evaluator_callback.

• error_name (str) – The name of the error stored in evaluator_callback.

12.10 Timer

class qucumber.callbacks.Timer(verbose=True)
Callback which records the training time.

This callback is always called at the start and end of training. It will run at the end of an epoch or batch if the
given model’s stop_training property is set to True.

Parameters verbose (bool) – Whether to print the elapsed time at the end of training.
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CHAPTER

THIRTEEN

OBSERVABLES

13.1 Pauli Operators

class qucumber.observables.SigmaZ(absolute=False)
Bases: qucumber.observables.ObservableBase

The 𝜎𝑧 observable.

Computes the average magnetization in the Z direction of a spin chain.

Parameters absolute (bool) – Specifies whether to estimate the absolute magnetization.

apply(nn_state, samples)
Computes the average magnetization along Z of each sample given a batch of samples.

Assumes that the computational basis that the NeuralState was trained on was the Z basis.

Parameters

• nn_state (qucumber.nn_states.NeuralStateBase) – The NeuralState that drew the
samples.

• samples (torch.Tensor) – A batch of samples to calculate the observable on. Must be
using the 𝜎𝑖 = 0, 1 convention.

property name
The name of the Observable.

sample(nn_state, k, num_samples=1, initial_state=None, overwrite=False)
Draws samples of the observable using the given NeuralState.

Parameters

• nn_state (qucumber.nn_states.NeuralStateBase) – The NeuralState to draw sam-
ples from.

• k (int) – The number of Gibbs Steps to perform before drawing a sample.

• num_samples (int) – The number of samples to draw.

• initial_state (torch.Tensor) – The initial state of the Markov Chain. If given,
num_samples will be ignored.

• overwrite (bool) – Whether to overwrite the initial_state tensor, if provided, with the
updated state of the Markov chain.

Returns The samples drawn through this observable.

Return type torch.Tensor
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statistics(nn_state, num_samples, num_chains=0, burn_in=1000, steps=1, initial_state=None,
overwrite=False)

Estimates the expected value, variance, and the standard error of the observable over the distribution defined
by the NeuralState.

Parameters

• nn_state (qucumber.nn_states.NeuralStateBase) – The NeuralState to draw sam-
ples from.

• num_samples (int) – The number of samples to draw. The actual number of samples
drawn may be slightly higher if num_samples % num_chains != 0.

• num_chains (int) – The number of Markov chains to run in parallel; if 0 or greater than
num_samples, will use a number of chains equal to num_samples. This is not recommended
in the case where a num_samples is large, as this may use up all the available memory.
Ignored if initial_state is provided.

• burn_in (int) – The number of Gibbs Steps to perform before recording any samples.

• steps (int) – The number of Gibbs Steps to take between each sample.

• initial_state (torch.Tensor) – The initial state of the Markov Chain. If given,
num_chains will be ignored.

• overwrite (bool) – Whether to overwrite the initial_state tensor, if provided, with the
updated state of the Markov chain.

Returns A dictionary containing the (estimated) expected value (key: “mean”), variance (key:
“variance”), and standard error (key: “std_error”) of the observable. Also outputs the total
number of drawn samples (key: “num_samples”).

Return type dict(str, float)

statistics_from_samples(nn_state, samples)
Estimates the expected value, variance, and the standard error of the observable using the given samples.

Parameters

• nn_state (qucumber.nn_states.NeuralStateBase) – The NeuralState that drew the
samples.

• samples (torch.Tensor) – A batch of sample states to calculate the observable on.

Returns A dictionary containing the (estimated) expected value (key: “mean”), variance (key:
“variance”), and standard error (key: “std_error”) of the observable. Also outputs the total
number of drawn samples (key: “num_samples”).

Return type dict(str, float)

property symbol
The algebraic symbol representing the Observable.

class qucumber.observables.SigmaX(absolute=False)
Bases: qucumber.observables.ObservableBase

The 𝜎𝑥 observable

Computes the average magnetization in the X direction of a spin chain.

Parameters absolute (bool) – Specifies whether to estimate the absolute magnetization.

apply(nn_state, samples)
Computes the average magnetization along X of each sample in the given batch of samples.
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Assumes that the computational basis that the NeuralState was trained on was the Z basis.

Parameters

• nn_state (qucumber.nn_states.NeuralStateBase) – The NeuralState that drew the
samples.

• samples (torch.Tensor) – A batch of samples to calculate the observable on. Must be
using the 𝜎𝑖 = 0, 1 convention.

property name
The name of the Observable.

sample(nn_state, k, num_samples=1, initial_state=None, overwrite=False)
Draws samples of the observable using the given NeuralState.

Parameters

• nn_state (qucumber.nn_states.NeuralStateBase) – The NeuralState to draw sam-
ples from.

• k (int) – The number of Gibbs Steps to perform before drawing a sample.

• num_samples (int) – The number of samples to draw.

• initial_state (torch.Tensor) – The initial state of the Markov Chain. If given,
num_samples will be ignored.

• overwrite (bool) – Whether to overwrite the initial_state tensor, if provided, with the
updated state of the Markov chain.

Returns The samples drawn through this observable.

Return type torch.Tensor

statistics(nn_state, num_samples, num_chains=0, burn_in=1000, steps=1, initial_state=None,
overwrite=False)

Estimates the expected value, variance, and the standard error of the observable over the distribution defined
by the NeuralState.

Parameters

• nn_state (qucumber.nn_states.NeuralStateBase) – The NeuralState to draw sam-
ples from.

• num_samples (int) – The number of samples to draw. The actual number of samples
drawn may be slightly higher if num_samples % num_chains != 0.

• num_chains (int) – The number of Markov chains to run in parallel; if 0 or greater than
num_samples, will use a number of chains equal to num_samples. This is not recommended
in the case where a num_samples is large, as this may use up all the available memory.
Ignored if initial_state is provided.

• burn_in (int) – The number of Gibbs Steps to perform before recording any samples.

• steps (int) – The number of Gibbs Steps to take between each sample.

• initial_state (torch.Tensor) – The initial state of the Markov Chain. If given,
num_chains will be ignored.

• overwrite (bool) – Whether to overwrite the initial_state tensor, if provided, with the
updated state of the Markov chain.
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Returns A dictionary containing the (estimated) expected value (key: “mean”), variance (key:
“variance”), and standard error (key: “std_error”) of the observable. Also outputs the total
number of drawn samples (key: “num_samples”).

Return type dict(str, float)

statistics_from_samples(nn_state, samples)
Estimates the expected value, variance, and the standard error of the observable using the given samples.

Parameters

• nn_state (qucumber.nn_states.NeuralStateBase) – The NeuralState that drew the
samples.

• samples (torch.Tensor) – A batch of sample states to calculate the observable on.

Returns A dictionary containing the (estimated) expected value (key: “mean”), variance (key:
“variance”), and standard error (key: “std_error”) of the observable. Also outputs the total
number of drawn samples (key: “num_samples”).

Return type dict(str, float)

property symbol
The algebraic symbol representing the Observable.

class qucumber.observables.SigmaY(absolute=False)
Bases: qucumber.observables.ObservableBase

The 𝜎𝑦 observable

Computes the average magnetization in the Y direction of a spin chain.

Parameters absolute (bool) – Specifies whether to estimate the absolute magnetization.

apply(nn_state, samples)
Computes the average magnetization along Y of each sample in the given batch of samples.

Assumes that the computational basis that the NeuralState was trained on was the Z basis.

Parameters

• nn_state (qucumber.nn_states.NeuralStateBase) – The NeuralState that drew the
samples.

• samples (torch.Tensor) – A batch of samples to calculate the observable on. Must be
using the 𝜎𝑖 = 0, 1 convention.

property name
The name of the Observable.

sample(nn_state, k, num_samples=1, initial_state=None, overwrite=False)
Draws samples of the observable using the given NeuralState.

Parameters

• nn_state (qucumber.nn_states.NeuralStateBase) – The NeuralState to draw sam-
ples from.

• k (int) – The number of Gibbs Steps to perform before drawing a sample.

• num_samples (int) – The number of samples to draw.

• initial_state (torch.Tensor) – The initial state of the Markov Chain. If given,
num_samples will be ignored.
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• overwrite (bool) – Whether to overwrite the initial_state tensor, if provided, with the
updated state of the Markov chain.

Returns The samples drawn through this observable.

Return type torch.Tensor

statistics(nn_state, num_samples, num_chains=0, burn_in=1000, steps=1, initial_state=None,
overwrite=False)

Estimates the expected value, variance, and the standard error of the observable over the distribution defined
by the NeuralState.

Parameters

• nn_state (qucumber.nn_states.NeuralStateBase) – The NeuralState to draw sam-
ples from.

• num_samples (int) – The number of samples to draw. The actual number of samples
drawn may be slightly higher if num_samples % num_chains != 0.

• num_chains (int) – The number of Markov chains to run in parallel; if 0 or greater than
num_samples, will use a number of chains equal to num_samples. This is not recommended
in the case where a num_samples is large, as this may use up all the available memory.
Ignored if initial_state is provided.

• burn_in (int) – The number of Gibbs Steps to perform before recording any samples.

• steps (int) – The number of Gibbs Steps to take between each sample.

• initial_state (torch.Tensor) – The initial state of the Markov Chain. If given,
num_chains will be ignored.

• overwrite (bool) – Whether to overwrite the initial_state tensor, if provided, with the
updated state of the Markov chain.

Returns A dictionary containing the (estimated) expected value (key: “mean”), variance (key:
“variance”), and standard error (key: “std_error”) of the observable. Also outputs the total
number of drawn samples (key: “num_samples”).

Return type dict(str, float)

statistics_from_samples(nn_state, samples)
Estimates the expected value, variance, and the standard error of the observable using the given samples.

Parameters

• nn_state (qucumber.nn_states.NeuralStateBase) – The NeuralState that drew the
samples.

• samples (torch.Tensor) – A batch of sample states to calculate the observable on.

Returns A dictionary containing the (estimated) expected value (key: “mean”), variance (key:
“variance”), and standard error (key: “std_error”) of the observable. Also outputs the total
number of drawn samples (key: “num_samples”).

Return type dict(str, float)

property symbol
The algebraic symbol representing the Observable.
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13.2 Neighbour Interactions

class qucumber.observables.NeighbourInteraction(periodic_bcs=False, c=1)
Bases: qucumber.observables.ObservableBase

The 𝜎𝑧
𝑖 𝜎

𝑧
𝑖+𝑐 observable

Computes the 𝑐th nearest neighbour interaction for a spin chain with either open or periodic boundary conditions.

Parameters

• periodic_bcs (bool) – Specifies whether the system has periodic boundary conditions.

• c (int) – Interaction distance.

apply(nn_state, samples)
Computes the energy of this neighbour interaction for each sample given a batch of samples.

Parameters

• nn_state (qucumber.nn_states.NeuralStateBase) – The NeuralState that drew the
samples.

• samples (torch.Tensor) – A batch of samples to calculate the observable on. Must be
using the 𝜎𝑖 = 0, 1 convention.

property name
The name of the Observable.

sample(nn_state, k, num_samples=1, initial_state=None, overwrite=False)
Draws samples of the observable using the given NeuralState.

Parameters

• nn_state (qucumber.nn_states.NeuralStateBase) – The NeuralState to draw sam-
ples from.

• k (int) – The number of Gibbs Steps to perform before drawing a sample.

• num_samples (int) – The number of samples to draw.

• initial_state (torch.Tensor) – The initial state of the Markov Chain. If given,
num_samples will be ignored.

• overwrite (bool) – Whether to overwrite the initial_state tensor, if provided, with the
updated state of the Markov chain.

Returns The samples drawn through this observable.

Return type torch.Tensor

statistics(nn_state, num_samples, num_chains=0, burn_in=1000, steps=1, initial_state=None,
overwrite=False)

Estimates the expected value, variance, and the standard error of the observable over the distribution defined
by the NeuralState.

Parameters

• nn_state (qucumber.nn_states.NeuralStateBase) – The NeuralState to draw sam-
ples from.

• num_samples (int) – The number of samples to draw. The actual number of samples
drawn may be slightly higher if num_samples % num_chains != 0.
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• num_chains (int) – The number of Markov chains to run in parallel; if 0 or greater than
num_samples, will use a number of chains equal to num_samples. This is not recommended
in the case where a num_samples is large, as this may use up all the available memory.
Ignored if initial_state is provided.

• burn_in (int) – The number of Gibbs Steps to perform before recording any samples.

• steps (int) – The number of Gibbs Steps to take between each sample.

• initial_state (torch.Tensor) – The initial state of the Markov Chain. If given,
num_chains will be ignored.

• overwrite (bool) – Whether to overwrite the initial_state tensor, if provided, with the
updated state of the Markov chain.

Returns A dictionary containing the (estimated) expected value (key: “mean”), variance (key:
“variance”), and standard error (key: “std_error”) of the observable. Also outputs the total
number of drawn samples (key: “num_samples”).

Return type dict(str, float)

statistics_from_samples(nn_state, samples)
Estimates the expected value, variance, and the standard error of the observable using the given samples.

Parameters

• nn_state (qucumber.nn_states.NeuralStateBase) – The NeuralState that drew the
samples.

• samples (torch.Tensor) – A batch of sample states to calculate the observable on.

Returns A dictionary containing the (estimated) expected value (key: “mean”), variance (key:
“variance”), and standard error (key: “std_error”) of the observable. Also outputs the total
number of drawn samples (key: “num_samples”).

Return type dict(str, float)

property symbol
The algebraic symbol representing the Observable.

13.3 Abstract Observable

Note: This is an Abstract Base Class, it is not meant to be used directly. The following API reference is mostly for
developers.

class qucumber.observables.ObservableBase
Bases: abc.ABC

Base class for observables.

abstract apply(nn_state, samples)
Computes the value of the local-estimator of the observable 𝑂, for a batch of samples {𝜎}:

𝒪(𝜎) =
∑︁
𝜎′

𝜌(𝜎′, 𝜎)

𝜌(𝜎, 𝜎)
𝑂(𝜎, 𝜎′) =

∑︁
𝜎′

𝜓(𝜎′)

𝜓(𝜎)
𝑂(𝜎, 𝜎′)

This function must not perform any averaging for statistical purposes, as the proper analysis is delegated to
the specialized statistics and statistics_from_samples methods.

Must be implemented by any subclasses. Refer to the tutorial on Observables to see an example.
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Parameters

• nn_state (qucumber.nn_states.NeuralStateBase) – The NeuralState that drew the
samples.

• samples (torch.Tensor) – A batch of sample states to calculate the observable on.

Returns The value of the observable of each given basis state.

Return type torch.Tensor

property name
The name of the Observable.

sample(nn_state, k, num_samples=1, initial_state=None, overwrite=False)
Draws samples of the observable using the given NeuralState.

Parameters

• nn_state (qucumber.nn_states.NeuralStateBase) – The NeuralState to draw sam-
ples from.

• k (int) – The number of Gibbs Steps to perform before drawing a sample.

• num_samples (int) – The number of samples to draw.

• initial_state (torch.Tensor) – The initial state of the Markov Chain. If given,
num_samples will be ignored.

• overwrite (bool) – Whether to overwrite the initial_state tensor, if provided, with the
updated state of the Markov chain.

Returns The samples drawn through this observable.

Return type torch.Tensor

statistics(nn_state, num_samples, num_chains=0, burn_in=1000, steps=1, initial_state=None,
overwrite=False)

Estimates the expected value, variance, and the standard error of the observable over the distribution defined
by the NeuralState.

Parameters

• nn_state (qucumber.nn_states.NeuralStateBase) – The NeuralState to draw sam-
ples from.

• num_samples (int) – The number of samples to draw. The actual number of samples
drawn may be slightly higher if num_samples % num_chains != 0.

• num_chains (int) – The number of Markov chains to run in parallel; if 0 or greater than
num_samples, will use a number of chains equal to num_samples. This is not recommended
in the case where a num_samples is large, as this may use up all the available memory.
Ignored if initial_state is provided.

• burn_in (int) – The number of Gibbs Steps to perform before recording any samples.

• steps (int) – The number of Gibbs Steps to take between each sample.

• initial_state (torch.Tensor) – The initial state of the Markov Chain. If given,
num_chains will be ignored.

• overwrite (bool) – Whether to overwrite the initial_state tensor, if provided, with the
updated state of the Markov chain.
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Returns A dictionary containing the (estimated) expected value (key: “mean”), variance (key:
“variance”), and standard error (key: “std_error”) of the observable. Also outputs the total
number of drawn samples (key: “num_samples”).

Return type dict(str, float)

statistics_from_samples(nn_state, samples)
Estimates the expected value, variance, and the standard error of the observable using the given samples.

Parameters

• nn_state (qucumber.nn_states.NeuralStateBase) – The NeuralState that drew the
samples.

• samples (torch.Tensor) – A batch of sample states to calculate the observable on.

Returns A dictionary containing the (estimated) expected value (key: “mean”), variance (key:
“variance”), and standard error (key: “std_error”) of the observable. Also outputs the total
number of drawn samples (key: “num_samples”).

Return type dict(str, float)

property symbol
The algebraic symbol representing the Observable.
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CHAPTER

FOURTEEN

TRAINING STATISTICS

qucumber.utils.training_statistics.KL(nn_state, target, space=None, bases=None, **kwargs)
A function for calculating the KL divergence averaged over every given basis.

𝐾𝐿(𝑃𝑡𝑎𝑟𝑔𝑒𝑡|𝑃𝑅𝐵𝑀 ) = −
∑︁
𝑥∈ℋ

𝑃𝑡𝑎𝑟𝑔𝑒𝑡(𝑥) log

(︂
𝑃𝑅𝐵𝑀 (𝑥)

𝑃𝑡𝑎𝑟𝑔𝑒𝑡(𝑥)

)︂
Parameters

• nn_state (qucumber.nn_states.NeuralStateBase) – The neural network state.

• target (torch.Tensor or dict(str, torch.Tensor)) – The true state (wavefunc-
tion or density matrix) of the system. Can be a dictionary with each value being the state
represented in a different basis, and the key identifying the basis.

• space (torch.Tensor) – The basis elements of the Hilbert space of the system ℋ. The
ordering of the basis elements must match with the ordering of the coefficients given in
target. If None, will generate them using the provided nn_state.

• bases (numpy.ndarray) – An array of unique bases. If given, the KL divergence will be
computed for each basis and the average will be returned.

• **kwargs – Extra keyword arguments that may be passed. Will be ignored.

Returns The KL divergence.

Return type float

qucumber.utils.training_statistics.NLL(nn_state, samples, space=None, sample_bases=None, **kwargs)
A function for calculating the negative log-likelihood (NLL).

Parameters

• nn_state (qucumber.nn_states.NeuralStateBase) – The neural network state.

• samples (torch.Tensor) – Samples to compute the NLL on.

• space (torch.Tensor) – The basis elements of the Hilbert space of the system ℋ. If None,
will generate them using the provided nn_state.

• sample_bases (numpy.ndarray) – An array of bases where measurements were taken.

• **kwargs – Extra keyword arguments that may be passed. Will be ignored.

Returns The Negative Log-Likelihood.

Return type float
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qucumber.utils.training_statistics.fidelity(nn_state, target, space=None, **kwargs)
Calculates the square of the overlap (fidelity) between the reconstructed state and the true state (both in the
computational basis).

𝐹 = |⟨𝜓𝑅𝐵𝑀 |𝜓𝑡𝑎𝑟𝑔𝑒𝑡⟩|2 =

(︂
tr[

√︁√
𝜌𝑅𝐵𝑀𝜌𝑡𝑎𝑟𝑔𝑒𝑡

√
𝜌𝑅𝐵𝑀 ]

)︂2

Parameters

• nn_state (qucumber.nn_states.NeuralStateBase) – The neural network state.

• target (torch.Tensor) – The true state of the system.

• space (torch.Tensor) – The basis elements of the Hilbert space of the system ℋ. The
ordering of the basis elements must match with the ordering of the coefficients given in
target. If None, will generate them using the provided nn_state.

• **kwargs – Extra keyword arguments that may be passed. Will be ignored.

Returns The fidelity.

Return type float
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CHAPTER

FIFTEEN

COMPLEX ALGEBRA

qucumber.utils.cplx.absolute_value(x)
Returns the complex absolute value elementwise.

Parameters x (torch.Tensor) – A complex tensor.

Returns A real tensor.

Return type torch.Tensor

qucumber.utils.cplx.conj(x)
Returns the element-wise complex conjugate of the argument.

Parameters x (torch.Tensor) – A complex tensor.

Returns The complex conjugate of x.

Return type torch.Tensor

qucumber.utils.cplx.conjugate(x)
Returns the conjugate transpose of the argument.

In the case of a scalar or vector, only the complex conjugate is taken. In the case of a rank-2 or higher tensor, the
complex conjugate is taken, then the first two indices of the tensor are swapped.

Parameters x (torch.Tensor) – A complex tensor.

Returns The conjugate of x.

Return type torch.Tensor

qucumber.utils.cplx.einsum(equation, a, b, real_part=True, imag_part=True)
Complex-aware version of einsum. See the torch documentation for more details.

Parameters

• equation (str) – The index equation. Passed directly to torch.einsum.

• a (torch.Tensor) – A complex tensor.

• b (torch.Tensor) – A complex tensor.

• real_part (bool) – Whether to compute and return the real part of the result.

• imag_part (bool) – Whether to compute and return the imaginary part of the result.

Returns The Einstein summation of the input tensors performed according to the given equation.
If both real_part and imag_part are true, the result will be a complex tensor, otherwise a real
tensor.

Return type torch.Tensor
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qucumber.utils.cplx.elementwise_division(x, y)
Element-wise division of x by y.

Parameters

• x (torch.Tensor) – A complex tensor.

• y (torch.Tensor) – A complex tensor.

Return type torch.Tensor

qucumber.utils.cplx.elementwise_mult(x, y)
Alias for scalar_mult().

qucumber.utils.cplx.imag(x)
Returns the imaginary part of a complex tensor.

Parameters x (torch.Tensor) – The complex tensor

Returns The imaginary part of x; will have one less dimension than x.

Return type torch.Tensor

qucumber.utils.cplx.inner_prod(x, y)
A function that returns the inner product of two complex vectors, x and y (<x|y>).

Parameters

• x (torch.Tensor) – A complex vector.

• y (torch.Tensor) – A complex vector.

Raises ValueError – If x and y are not complex vectors with their first dimensions being 2, then
the function will not execute.

Returns The inner product, ⟨𝑥|𝑦⟩.

Return type torch.Tensor

qucumber.utils.cplx.inverse(z)
Returns the multiplicative inverse of z. Acts elementwise.

Parameters z (torch.Tensor) – The complex tensor.

Returns 1 / z

Return type torch.Tensor

qucumber.utils.cplx.kronecker_prod(x, y)
Returns the tensor / Kronecker product of 2 complex matrices, x and y.

Parameters

• x (torch.Tensor) – A complex matrix.

• y (torch.Tensor) – A complex matrix.

Raises ValueError – If x and y do not have 3 dimensions or their first dimension is not 2, the
function cannot execute.

Returns The Kronecker product of x and y, 𝑥⊗ 𝑦.

Return type torch.Tensor

qucumber.utils.cplx.make_complex(x, y=None)
A function that creates a torch compatible complex tensor.
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Note: x and y must have the same shape.

Parameters

• x (torch.Tensor or numpy.ndarray) – The real part or a complex numpy array. If a
numpy array, will ignore y.

• y (torch.Tensor) – The imaginary part. Can be None, in which case, the resulting complex
tensor will have imaginary part equal to zero.

Returns The tensor [𝑥, 𝑦] = 𝑥+ 𝑖𝑦.

Return type torch.Tensor

qucumber.utils.cplx.matmul(x, y)
A function that computes complex matrix-matrix and matrix-vector products.

Note: If one wishes to do matrix-vector products, the vector must be the second argument (y).

Parameters

• x (torch.Tensor) – A complex matrix.

• y (torch.Tensor) – A complex vector or matrix.

Returns The product between x and y.

Return type torch.Tensor

qucumber.utils.cplx.norm(x)
Returns the norm of the argument.

Parameters x (torch.Tensor) – A complex scalar.

Returns |𝑥|.

Return type torch.Tensor

qucumber.utils.cplx.norm_sqr(x)
Returns the squared norm of the argument.

Parameters x (torch.Tensor) – A complex scalar.

Returns |𝑥|2.

Return type torch.Tensor

qucumber.utils.cplx.numpy(x)
Converts a complex torch tensor into a numpy array

Parameters x (torch.Tensor) – The tensor to convert.

Returns A complex numpy array containing the data from x.

Return type numpy.ndarray

qucumber.utils.cplx.outer_prod(x, y)
A function that returns the outer product of two complex vectors, x and y.

Parameters
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• x (torch.Tensor) – A complex vector.

• y (torch.Tensor) – A complex vector.

Raises ValueError – If x and y are not complex vectors with their first dimensions being 2, then an
error will be raised.

Returns The outer product between x and y, |𝑥⟩⟨𝑦|.

Return type torch.Tensor

qucumber.utils.cplx.real(x)
Returns the real part of a complex tensor.

Parameters x (torch.Tensor) – The complex tensor

Returns The real part of x; will have one less dimension than x.

Return type torch.Tensor

qucumber.utils.cplx.scalar_divide(x, y)
Divides x by y. If x and y have the same shape, then acts elementwise. If y is a complex scalar, then performs a
scalar division.

Parameters

• x (torch.Tensor) – The numerator (a complex tensor).

• y (torch.Tensor) – The denominator (a complex tensor).

Returns x / y

Return type torch.Tensor

qucumber.utils.cplx.scalar_mult(x, y, out=None)
A function that computes the product between complex matrices and scalars, complex vectors and scalars or two
complex scalars.

Parameters

• x (torch.Tensor) – A complex scalar, vector or matrix.

• y (torch.Tensor) – A complex scalar, vector or matrix.

Returns The product between x and y. Either overwrites out, or returns a new tensor.

Return type torch.Tensor

qucumber.utils.cplx.sigmoid(x, y)
Returns the sigmoid function of a complex number. Acts elementwise.

Parameters

• x (torch.Tensor) – The real part of the complex number

• y (torch.Tensor) – The imaginary part of the complex number

Returns The complex sigmoid of 𝑥+ 𝑖𝑦

Return type torch.Tensor

98 Chapter 15. Complex Algebra

https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://docs.python.org/3/library/exceptions.html#ValueError
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor


CHAPTER

SIXTEEN

DATA HANDLING

qucumber.utils.data.extract_refbasis_samples(train_samples, train_bases)
Extract the reference basis samples from the data.

Parameters

• train_samples (torch.Tensor) – The training samples.

• train_bases (numpy.ndarray) – The bases of the training samples.

Returns The samples in the data that are only in the reference basis.

Return type torch.Tensor

qucumber.utils.data.load_data(tr_samples_path, tr_psi_path=None, tr_bases_path=None,
bases_path=None)

Load the data required for training.

Parameters

• tr_samples_path (str) – The path to the training data.

• tr_psi_path (str) – The path to the target/true wavefunction.

• tr_bases_path (str) – The path to the basis data.

• bases_path (str) – The path to a file containing all possible bases used in the tr_bases_path
file.

Returns A list of all input parameters.

Return type list

qucumber.utils.data.load_data_DM(tr_samples_path, tr_mtx_real_path=None, tr_mtx_imag_path=None,
tr_bases_path=None, bases_path=None)

Load the data required for training.

Parameters

• tr_samples_path (str) – The path to the training data.

• tr_mtx_real_path (str) – The path to the real part of the density matrix

• tr_mtx_imag_path (str) – The path to the imaginary part of the density matrix

• tr_bases_path (str) – The path to the basis data.

• bases_path (str) – The path to a file containing all possible bases used in the tr_bases_path
file.

Returns A list of all input parameters, with the real and imaginary parts of the target density matrix
(if provided) combined into one complex matrix.
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Return type list
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INDICES AND TABLES

• genindex

• search
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